Menu Close

wich-statment-is-true-1-if-x-Q-and-y-Z-then-xy-Q-Z-2-if-x-Q-Z-and-y-Z-then-xy-Q-Z-3-if-x-R-then-y-R-such-that-xy-5-4-if-x-N-0-then-y-Q-such-that-y-x-2-x-x-1-Q-




Question Number 1208 by 123456 last updated on 14/Jul/15
wich statment is true  1.if x∈Q and y∈Z, then xy∈Q/Z  2.if x∈Q/Z and y∈Z, then xy∈Q/Z  3.if x∈R, then ∃y∈R such that xy=5  4.if x∈N/{0}, then ∃y∈Q such that (√((y(x+2))/(x(x+1))))∈Q
$$\mathrm{wich}\:\mathrm{statment}\:\mathrm{is}\:\mathrm{true} \\ $$$$\mathrm{1}.\mathrm{if}\:{x}\in\mathbb{Q}\:\mathrm{and}\:{y}\in\mathbb{Z},\:\mathrm{then}\:{xy}\in\mathbb{Q}/\mathbb{Z} \\ $$$$\mathrm{2}.\mathrm{if}\:{x}\in\mathbb{Q}/\mathbb{Z}\:\mathrm{and}\:{y}\in\mathbb{Z},\:\mathrm{then}\:{xy}\in\mathbb{Q}/\mathbb{Z} \\ $$$$\mathrm{3}.\mathrm{if}\:{x}\in\mathbb{R},\:\mathrm{then}\:\exists{y}\in\mathbb{R}\:\mathrm{such}\:\mathrm{that}\:{xy}=\mathrm{5} \\ $$$$\mathrm{4}.\mathrm{if}\:{x}\in\mathbb{N}/\left\{\mathrm{0}\right\},\:\mathrm{then}\:\exists{y}\in\mathbb{Q}\:\mathrm{such}\:\mathrm{that}\:\sqrt{\frac{{y}\left({x}+\mathrm{2}\right)}{{x}\left({x}+\mathrm{1}\right)}}\in\mathbb{Q} \\ $$
Answered by prakash jain last updated on 18/Jul/15
1. false x=1, y=1, xy∉Q/Z  2. false. x=(1/2), y=1, xy∉Q/Z  3. false. x=0 ∄y∈R such that xy=5  4. true  ((y(x+2))/(x(x+1)))=(p^2 /q^2 )⇒y=((p^2 x(x+1))/(q^2 (x+2))), x,p,q ∈N⇒y∈Q
$$\mathrm{1}.\:\mathrm{false}\:{x}=\mathrm{1},\:{y}=\mathrm{1},\:{xy}\notin\mathbb{Q}/\mathbb{Z} \\ $$$$\mathrm{2}.\:\mathrm{false}.\:{x}=\frac{\mathrm{1}}{\mathrm{2}},\:{y}=\mathrm{1},\:{xy}\notin\mathbb{Q}/\mathbb{Z} \\ $$$$\mathrm{3}.\:\mathrm{false}.\:{x}=\mathrm{0}\:\nexists{y}\in\mathbb{R}\:\mathrm{such}\:\mathrm{that}\:{xy}=\mathrm{5} \\ $$$$\mathrm{4}.\:\mathrm{true} \\ $$$$\frac{{y}\left({x}+\mathrm{2}\right)}{{x}\left({x}+\mathrm{1}\right)}=\frac{{p}^{\mathrm{2}} }{{q}^{\mathrm{2}} }\Rightarrow{y}=\frac{{p}^{\mathrm{2}} {x}\left({x}+\mathrm{1}\right)}{{q}^{\mathrm{2}} \left({x}+\mathrm{2}\right)},\:{x},{p},{q}\:\in\mathbb{N}\Rightarrow{y}\in\mathbb{Q} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *