Menu Close

With-linear-functions-f-x-and-g-x-if-f-x-g-x-then-m-f-m-g-1-where-m-i-is-the-gradient-of-function-i-x-Does-that-therefore-mean-that-if-given-function-including-non-linear-f-x-f-x




Question Number 2249 by Filup last updated on 11/Nov/15
With linear functions f(x) and g(x),  if f(x)⊥g(x), then:  m_f m_g =−1    where m_i  is the gradient  of function i(x).    Does that therefore mean that, if given  function (including non−linear) f(x),  f′(x)g′(x)=−1,     if f(x)⊥g(x) at x=n?    e.g.  f(x)=x^2   f′(x)=2x    if f(x)⊥g(x) at x=n:  ∴f′(x)g′(x)=−1  g′(x)=−(1/(2x))  g(x)=−∫(1/(2x))dx  ∴g(x)=−(1/2)ln(2x)+c_1     f(x)=x^2 ,   g(x)=−(1/2)ln(2x)  ∴ x^2 (−(1/2)ln(2x))=−1    My question therefore comes down to:  Are the tangent lines of f(x) and g(x)  at x=n perpendicular to each other  for all values of n∈{f(x), g(x)}?
Withlinearfunctionsf(x)andg(x),iff(x)g(x),then:mfmg=1wheremiisthegradientoffunctioni(x).Doesthatthereforemeanthat,ifgivenfunction(includingnonlinear)f(x),f(x)g(x)=1,iff(x)g(x)atx=n?e.g.f(x)=x2f(x)=2xiff(x)g(x)atx=n:f(x)g(x)=1g(x)=12xg(x)=12xdxg(x)=12ln(2x)+c1f(x)=x2,g(x)=12ln(2x)x2(12ln(2x))=1Myquestionthereforecomesdownto:Arethetangentlinesoff(x)andg(x)atx=nperpendiculartoeachotherforallvaluesofn{f(x),g(x)}?
Answered by Filup last updated on 12/Nov/15
eqn of tangent line on f(x) at x=n:  y_f =f′(n)(x−n)+f(n)  ∴egn of line on g(x) at x=n:  f′(x)g′(x)=1  y_g =g′(n)(x−n)+g(n)  ∴y_g =−(1/(f′(x)))(x−n)+g(n)    y_f =f′(n)(x−n)+f(n)  y_g =−(1/(f′(n)))(x−n)+g(n)    y_f  and y_g  are the tangent lines at x=n    ∴y_f ⊥y_g ∵f′(n)×(−(1/(f′(n))))=−1  ∴if g(x)=∫−(1/(f′(x)))dx, the tangent lines  at x=n are perpendicular
eqnoftangentlineonf(x)atx=n:yf=f(n)(xn)+f(n)egnoflineong(x)atx=n:f(x)g(x)=1yg=g(n)(xn)+g(n)yg=1f(x)(xn)+g(n)yf=f(n)(xn)+f(n)yg=1f(n)(xn)+g(n)yfandygarethetangentlinesatx=nyfygf(n)×(1f(n))=1ifg(x)=1f(x)dx,thetangentlinesatx=nareperpendicular
Commented by Filup last updated on 12/Nov/15
This took me way to long to figure out  and prove haha. So simple
Thistookmewaytolongtofigureoutandprovehaha.Sosimple

Leave a Reply

Your email address will not be published. Required fields are marked *