With-linear-functions-f-x-and-g-x-if-f-x-g-x-then-m-f-m-g-1-where-m-i-is-the-gradient-of-function-i-x-Does-that-therefore-mean-that-if-given-function-including-non-linear-f-x-f-x Tinku Tara June 3, 2023 None 0 Comments FacebookTweetPin Question Number 2249 by Filup last updated on 11/Nov/15 Withlinearfunctionsf(x)andg(x),iff(x)⊥g(x),then:mfmg=−1wheremiisthegradientoffunctioni(x).Doesthatthereforemeanthat,ifgivenfunction(includingnon−linear)f(x),f′(x)g′(x)=−1,iff(x)⊥g(x)atx=n?e.g.f(x)=x2f′(x)=2xiff(x)⊥g(x)atx=n:∴f′(x)g′(x)=−1g′(x)=−12xg(x)=−∫12xdx∴g(x)=−12ln(2x)+c1f(x)=x2,g(x)=−12ln(2x)∴x2(−12ln(2x))=−1Myquestionthereforecomesdownto:Arethetangentlinesoff(x)andg(x)atx=nperpendiculartoeachotherforallvaluesofn∈{f(x),g(x)}? Answered by Filup last updated on 12/Nov/15 eqnoftangentlineonf(x)atx=n:yf=f′(n)(x−n)+f(n)∴egnoflineong(x)atx=n:f′(x)g′(x)=1yg=g′(n)(x−n)+g(n)∴yg=−1f′(x)(x−n)+g(n)yf=f′(n)(x−n)+f(n)yg=−1f′(n)(x−n)+g(n)yfandygarethetangentlinesatx=n∴yf⊥yg∵f′(n)×(−1f′(n))=−1∴ifg(x)=∫−1f′(x)dx,thetangentlinesatx=nareperpendicular Commented by Filup last updated on 12/Nov/15 Thistookmewaytolongtofigureoutandprovehaha.Sosimple Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: a-Are-there-any-graphs-with-5-vertices-which-have-vertices-of-degrees-1-2-3-4-and-5-Next Next post: Find-all-n-for-which-n-2-2n-4-is-divisible-by-7- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.