Question Number 140628 by mohammad17 last updated on 10/May/21
$$\:{with}\:{out}\:{special}\:{function}\:{find} \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{10}}} \sqrt{{tanx}}{dx}\:? \\ $$$$ \\ $$
Answered by Dwaipayan Shikari last updated on 10/May/21
$$\int\sqrt{{tanx}}\:{dx}\:\:\:\:{tanx}={t}^{\mathrm{2}} \\ $$$$=\int\frac{\mathrm{2}{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{4}} }{dt}=\mathrm{2}\int\frac{\mathrm{1}}{\left({t}^{\mathrm{2}} +\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right)}{dt}=\int\frac{\mathrm{1}−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}{\left({t}+\frac{\mathrm{1}}{{t}}\right)^{\mathrm{2}} −\mathrm{2}}+\frac{\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}{\left({t}−\frac{\mathrm{1}}{{t}}\right)^{\mathrm{2}} +\mathrm{2}}{dt} \\ $$$$=\frac{\mathrm{1}}{\:\mathrm{2}\sqrt{\mathrm{2}}}{log}\left(\frac{{t}+\frac{\mathrm{1}}{{t}}−\sqrt{\mathrm{2}}}{{t}+\frac{\mathrm{1}}{{t}}+\sqrt{\mathrm{2}}}\right)+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{tan}^{−\mathrm{1}} \left(\frac{{t}−\frac{\mathrm{1}}{{t}}}{\:\sqrt{\mathrm{2}}}\right)+{C} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}{log}\left(\frac{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}+\mathrm{1}}{{t}^{\mathrm{2}} +\sqrt{\mathrm{2}}{t}+\mathrm{1}}\right)+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{tan}^{−\mathrm{1}} \left(\frac{{t}^{\mathrm{2}} −\mathrm{1}}{\:\sqrt{\mathrm{2}{t}}}\right)+{C} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{10}}} \sqrt{{tanx}}\:{dx}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}{log}\left(\frac{{tan}\frac{\pi}{\mathrm{10}}−\sqrt{\mathrm{2}{tan}\frac{\pi}{\mathrm{10}}}+\mathrm{1}}{{tan}\frac{\pi}{\mathrm{10}}+\sqrt{\mathrm{2}{tan}\frac{\pi}{\mathrm{10}}}+\mathrm{1}}\right)+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{tan}^{−\mathrm{1}} \left(\frac{{tan}\frac{\pi}{\mathrm{10}}−\mathrm{1}}{\:\sqrt{\mathrm{2}{tan}\frac{\pi}{\mathrm{10}}}}\right)+\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$${tan}\frac{\pi}{\mathrm{10}}=\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\:\sqrt{\mathrm{10}+\mathrm{2}\sqrt{\mathrm{5}}}}\: \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{log}\left(\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{10}+\mathrm{2}\sqrt{\mathrm{5}}}−\sqrt{\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{5}+\sqrt{\mathrm{5}}}}+\mathrm{1}\right)−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}{log}\left(\frac{\mathrm{8}}{\mathrm{5}+\sqrt{\mathrm{5}}}\right)+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{tan}^{−\mathrm{1}} \left(\frac{\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\:\sqrt{\mathrm{10}+\mathrm{2}\sqrt{\mathrm{5}}}}−\mathrm{1}}{\:\sqrt{\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{5}+\sqrt{\mathrm{5}}}}}\right)+\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$
Answered by Dwaipayan Shikari last updated on 10/May/21
$$\int_{\mathrm{0}} ^{{a}} {sin}^{\alpha} \left({x}\right){cos}^{\beta} \left({x}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{{sin}\left({a}\right)} \frac{{t}^{\alpha} }{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\left(\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }\right)^{\beta} {dt} \\ $$$$=\int_{\mathrm{0}} ^{{sin}\left({a}\right)} \frac{{t}^{\alpha} }{\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{\frac{\mathrm{1}−\beta}{\mathrm{2}}} }{dt}=\underset{{n}\geqslant\mathrm{0}} {\sum}\int_{\mathrm{0}} ^{{sin}\left({a}\right)} \frac{\left(\frac{\mathrm{1}−\beta}{\mathrm{2}}\right)_{{n}} }{{n}!}{t}^{\alpha+\mathrm{2}{n}} {dt} \\ $$$$={sin}^{\alpha+\mathrm{1}} \left({a}\right)\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(\frac{\mathrm{1}−\beta}{\mathrm{2}}\right)_{{n}} }{{n}!\left(\alpha+\mathrm{2}{n}+\mathrm{1}\right)}\left({sin}^{\mathrm{2}} \left({a}\right)\right)^{\mathrm{2}{n}} \\ $$$$=\frac{\mathrm{1}}{\alpha+\mathrm{1}}{sin}^{\alpha+\mathrm{1}} \left({a}\right)\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(\frac{\mathrm{1}−\beta}{\mathrm{2}}\right)_{{n}} \left(\frac{\alpha+\mathrm{1}}{\mathrm{2}}\right)_{{n}} }{{n}!\left(\frac{\alpha+\mathrm{3}}{\mathrm{2}}\right)_{{n}} }\left({sin}^{\mathrm{2}} \left({a}\right)\right)^{\mathrm{2}{n}} \\ $$$$=\frac{{sin}^{\alpha+\mathrm{1}} \left({a}\right)}{\alpha+\mathrm{1}}\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}−\beta}{\mathrm{2}},\frac{\alpha+\mathrm{1}}{\mathrm{2}};\frac{\alpha+\mathrm{3}}{\mathrm{2}};{sin}^{\mathrm{2}} \left({a}\right)\right) \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{10}}} \sqrt{{tanx}}\:{dx}=\frac{{sin}^{\mathrm{3}/\mathrm{2}} \left(\frac{\pi}{\mathrm{10}}\right)}{\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}}\:\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{4}},\frac{\mathrm{3}}{\mathrm{4}};\frac{\mathrm{7}}{\mathrm{4}};\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{8}}\right) \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}\left(\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{8}}\right)^{\mathrm{3}/\mathrm{2}} \:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{4}};\frac{\mathrm{3}}{\mathrm{4}};\frac{\mathrm{7}}{\mathrm{4}};\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{8}}\right) \\ $$