Menu Close

with-out-special-function-find-0-pi-10-tanx-dx-




Question Number 140628 by mohammad17 last updated on 10/May/21
 with out special function find    ∫_0 ^( (π/(10))) (√(tanx))dx ?
withoutspecialfunctionfind0π10tanxdx?
Answered by Dwaipayan Shikari last updated on 10/May/21
∫(√(tanx)) dx    tanx=t^2   =∫((2t^2 )/(1+t^4 ))dt=2∫(1/((t^2 +(1/t^2 ))))dt=∫((1−(1/t^2 ))/((t+(1/t))^2 −2))+((1+(1/t^2 ))/((t−(1/t))^2 +2))dt  =(1/( 2(√2)))log(((t+(1/t)−(√2))/(t+(1/t)+(√2))))+(1/( (√2)))tan^(−1) (((t−(1/t))/( (√2))))+C  =(1/(2(√2)))log(((t^2 −(√2)t+1)/(t^2 +(√2)t+1)))+(1/( (√2)))tan^(−1) (((t^2 −1)/( (√(2t)))))+C  ∫_0 ^(π/(10)) (√(tanx)) dx=(1/(2(√2)))log(((tan(π/(10))−(√(2tan(π/(10))))+1)/(tan(π/(10))+(√(2tan(π/(10))))+1)))+(1/( (√2)))tan^(−1) (((tan(π/(10))−1)/( (√(2tan(π/(10)))))))+(π/(2(√2)))  tan(π/(10))=(((√5)−1)/( (√(10+2(√5)))))   =(1/( (√2)))log((((√5)−1)/(10+2(√5)))−(√(((√5)−1)/(5+(√5))))+1)−(1/(2(√2)))log((8/(5+(√5))))+(1/( (√2)))tan^(−1) ((((((√5)−1)/( (√(10+2(√5)))))−1)/( (√(((√5)−1)/(5+(√5)))))))+(π/(2(√2)))
tanxdxtanx=t2=2t21+t4dt=21(t2+1t2)dt=11t2(t+1t)22+1+1t2(t1t)2+2dt=122log(t+1t2t+1t+2)+12tan1(t1t2)+C=122log(t22t+1t2+2t+1)+12tan1(t212t)+C0π10tanxdx=122log(tanπ102tanπ10+1tanπ10+2tanπ10+1)+12tan1(tanπ1012tanπ10)+π22tanπ10=5110+25=12log(5110+25515+5+1)122log(85+5)+12tan1(5110+251515+5)+π22
Answered by Dwaipayan Shikari last updated on 10/May/21
∫_0 ^a sin^α (x)cos^β (x)dx  =∫_0 ^(sin(a)) (t^α /( (√(1−t^2 ))))((√(1−t^2 )))^β dt  =∫_0 ^(sin(a)) (t^α /((1−t^2 )^((1−β)/2) ))dt=Σ_(n≥0) ∫_0 ^(sin(a)) (((((1−β)/2))_n )/(n!))t^(α+2n) dt  =sin^(α+1) (a)Σ_(n≥0) (((((1−β)/2))_n )/(n!(α+2n+1)))(sin^2 (a))^(2n)   =(1/(α+1))sin^(α+1) (a)Σ_(n≥0) (((((1−β)/2))_n (((α+1)/2))_n )/(n!(((α+3)/2))_n ))(sin^2 (a))^(2n)   =((sin^(α+1) (a))/(α+1)) _2 F_1 (((1−β)/2),((α+1)/2);((α+3)/2);sin^2 (a))  ∫_0 ^(π/(10)) (√(tanx)) dx=((sin^(3/2) ((π/(10))))/((1/2)+1))  _2 F_1 ((3/4),(3/4);(7/4);((3−(√5))/8))  =(2/3)(((3−(√5))/8))^(3/2)  _2 F_1 ((3/4);(3/4);(7/4);((3−(√5))/8))
0asinα(x)cosβ(x)dx=0sin(a)tα1t2(1t2)βdt=0sin(a)tα(1t2)1β2dt=n00sin(a)(1β2)nn!tα+2ndt=sinα+1(a)n0(1β2)nn!(α+2n+1)(sin2(a))2n=1α+1sinα+1(a)n0(1β2)n(α+12)nn!(α+32)n(sin2(a))2n=sinα+1(a)α+12F1(1β2,α+12;α+32;sin2(a))0π10tanxdx=sin3/2(π10)12+12F1(34,34;74;358)=23(358)3/22F1(34;34;74;358)

Leave a Reply

Your email address will not be published. Required fields are marked *