with-out-special-function-find-0-pi-10-tanx-dx- Tinku Tara June 3, 2023 None 0 Comments FacebookTweetPin Question Number 140628 by mohammad17 last updated on 10/May/21 withoutspecialfunctionfind∫0π10tanxdx? Answered by Dwaipayan Shikari last updated on 10/May/21 ∫tanxdxtanx=t2=∫2t21+t4dt=2∫1(t2+1t2)dt=∫1−1t2(t+1t)2−2+1+1t2(t−1t)2+2dt=122log(t+1t−2t+1t+2)+12tan−1(t−1t2)+C=122log(t2−2t+1t2+2t+1)+12tan−1(t2−12t)+C∫0π10tanxdx=122log(tanπ10−2tanπ10+1tanπ10+2tanπ10+1)+12tan−1(tanπ10−12tanπ10)+π22tanπ10=5−110+25=12log(5−110+25−5−15+5+1)−122log(85+5)+12tan−1(5−110+25−15−15+5)+π22 Answered by Dwaipayan Shikari last updated on 10/May/21 ∫0asinα(x)cosβ(x)dx=∫0sin(a)tα1−t2(1−t2)βdt=∫0sin(a)tα(1−t2)1−β2dt=∑n⩾0∫0sin(a)(1−β2)nn!tα+2ndt=sinα+1(a)∑n⩾0(1−β2)nn!(α+2n+1)(sin2(a))2n=1α+1sinα+1(a)∑n⩾0(1−β2)n(α+12)nn!(α+32)n(sin2(a))2n=sinα+1(a)α+12F1(1−β2,α+12;α+32;sin2(a))∫0π10tanxdx=sin3/2(π10)12+12F1(34,34;74;3−58)=23(3−58)3/22F1(34;34;74;3−58) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: cos-3-xsin-3-xdx-Next Next post: find-sin-2cosx-x-2-x-1-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.