Question Number 10211 by FilupSmith last updated on 30/Jan/17
$$\mathrm{without}\:\mathrm{solving}\:\mathrm{for}\:{x}\:\mathrm{in}\:{f}\left({x}\right)=\mathrm{0}, \\ $$$$\mathrm{show}\:\mathrm{me}\:\mathrm{a}\:\mathrm{different}\:\mathrm{way}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{roots}\:\mathrm{of}\:{f}\left({x}\right)={x}^{\mathrm{2}} −{x}−\mathrm{1} \\ $$
Commented by prakash jain last updated on 30/Jan/17
$$\mathrm{Different}\:\mathrm{from}\:\mathrm{solving}\:\mathrm{a}\:\mathrm{quadratic}? \\ $$$$\mathrm{Finding}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{called} \\ $$$$\mathrm{solving}\:{f}\left({x}\right)=\mathrm{0} \\ $$
Commented by FilupSmith last updated on 30/Jan/17
$$\mathrm{What}\:\mathrm{I}\:\mathrm{meam}\:\mathrm{is},\:\mathrm{are}\:\mathrm{there}\:\mathrm{any}\:\mathrm{other}\:\mathrm{methods}? \\ $$$$\: \\ $$$$\mathrm{For}\:\mathrm{example},\:\mathrm{how}\:\mathrm{can}\:\mathrm{you}\:\mathrm{find}\:\mathrm{the}\:{x}\: \\ $$$$\mathrm{interception}\:\mathrm{without}\:\mathrm{directly}\:\mathrm{solving} \\ $$$$\mathrm{the}\:\mathrm{quadratic}?\:\mathrm{is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{way}? \\ $$