Menu Close

Without-using-induction-or-arithmatic-series-concept-prove-the-following-1-2-3-n-n-n-1-2-




Question Number 2762 by Rasheed Soomro last updated on 26/Nov/15
Without using induction_(−)  or  arithmatic series−concept   _(−)    prove the following:  1+2+3+...+n=((n(n+1))/2)
$${Without}\:{using}\:\underset{−} {{induction}}\:{o}\underset{−} {{r}\:\:{arithmatic}\:{series}−{concept}\:\:\:} \\ $$$$\:{prove}\:{the}\:{following}: \\ $$$$\mathrm{1}+\mathrm{2}+\mathrm{3}+…+{n}=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$
Answered by prakash jain last updated on 26/Nov/15
n^2 −(n−1)^2 =2n−1  1^2 −0^2 =2∙1−1  2^2 −1^2 =2∙2−1  3^2 −2^2 =3∙2−1  ...  ...  n^2 −(n−1)^2 =2∙n−1  Sum all of the above.  n^2 =2(1+2+..+n)−n  2(1+2+3+..+n)=n^2 +n  Σ_(i=1) ^n i=((n(n+1))/2)
$${n}^{\mathrm{2}} −\left({n}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{2}{n}−\mathrm{1} \\ $$$$\mathrm{1}^{\mathrm{2}} −\mathrm{0}^{\mathrm{2}} =\mathrm{2}\centerdot\mathrm{1}−\mathrm{1} \\ $$$$\mathrm{2}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} =\mathrm{2}\centerdot\mathrm{2}−\mathrm{1} \\ $$$$\mathrm{3}^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} =\mathrm{3}\centerdot\mathrm{2}−\mathrm{1} \\ $$$$… \\ $$$$… \\ $$$${n}^{\mathrm{2}} −\left({n}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{2}\centerdot{n}−\mathrm{1} \\ $$$$\mathrm{Sum}\:\mathrm{all}\:\mathrm{of}\:\mathrm{the}\:\mathrm{above}. \\ $$$${n}^{\mathrm{2}} =\mathrm{2}\left(\mathrm{1}+\mathrm{2}+..+{n}\right)−{n} \\ $$$$\mathrm{2}\left(\mathrm{1}+\mathrm{2}+\mathrm{3}+..+{n}\right)={n}^{\mathrm{2}} +{n} \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{i}=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$
Commented by Rasheed Soomro last updated on 27/Nov/15
ThankS!
$$\mathcal{T}{hank}\mathcal{S}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *