Question Number 132950 by mohammad17 last updated on 17/Feb/21
$${write}\:\frac{\left(\mathrm{1}−{i}\right)^{\mathrm{23}} }{\left(\sqrt{\mathrm{3}}−{i}\right)^{\mathrm{13}} }\:{in}\left(\:{re}^{{i}\theta} \right) \\ $$
Answered by metamorfose last updated on 17/Feb/21
$${z}=\frac{\left(\mathrm{1}−{i}\right)^{\mathrm{23}} }{\:\left(\sqrt{\mathrm{3}}−{i}\right)^{\mathrm{13}} }=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:{e}^{{i}\frac{\mathrm{5}\pi}{\mathrm{12}}} \\ $$
Commented by metamorfose last updated on 17/Feb/21
$${ok}.. \\ $$$${z}=\frac{\left(\mathrm{1}−{i}\right)^{\mathrm{23}} }{\left(\sqrt{\mathrm{3}}−{i}\right)^{\mathrm{13}} }=\frac{\left(\sqrt{\mathrm{2}}{e}^{−{i}\frac{\pi}{\mathrm{4}}} \right)^{\mathrm{23}} }{\left(\mathrm{2}{e}^{−{i}\frac{\pi}{\mathrm{6}}} \right)^{\mathrm{13}} }=\frac{\left(\sqrt{\mathrm{2}}\right)^{\mathrm{23}} {e}^{−{i}\frac{\mathrm{23}\pi}{\mathrm{4}}} }{\mathrm{2}^{\mathrm{13}} {e}^{−{i}\frac{\mathrm{13}\pi}{\mathrm{6}}} } \\ $$$$\:\:\:\:=\frac{\left(\sqrt{\mathrm{2}}\right)^{\mathrm{23}} }{\left(\sqrt{\mathrm{2}}\right)^{\mathrm{26}} }{e}^{−{i}\left(\frac{\mathrm{23}\pi}{\mathrm{4}}−\frac{\mathrm{13}\pi}{\mathrm{6}}\right)} =\frac{\mathrm{1}}{\:\left(\sqrt{\mathrm{2}}\right)^{\mathrm{3}} }{e}^{−{i}\frac{\pi}{\mathrm{2}}\left(\frac{\mathrm{23}}{\mathrm{2}}−\frac{\mathrm{13}}{\mathrm{3}}\right)} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}{e}^{−{i}\frac{\mathrm{43}\pi}{\mathrm{12}}} =\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}{e}^{−{i}\left(\frac{\mathrm{48}\pi}{\mathrm{12}}−\frac{\mathrm{5}\pi}{\mathrm{12}}\right)} =\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}{e}^{−{i}\left(\mathrm{4}\pi−\frac{\mathrm{5}\pi}{\mathrm{12}}\right)} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}{e}^{{i}\frac{\mathrm{5}\pi}{\mathrm{12}}} \\ $$
Commented by mohammad17 last updated on 17/Feb/21
$${sir}\:{can}\:{you}\:{give}\:{me}\:{stebs} \\ $$
Commented by mohammad17 last updated on 17/Feb/21
$${i}\:{want}\:{steb}\:{by}\:{steb} \\ $$
Commented by mohammad17 last updated on 18/Feb/21
$${sir}\:{where}\:{e}^{−\mathrm{4}\pi{i}} \\ $$
Commented by metamorfose last updated on 18/Feb/21
$${e}^{−\mathrm{4}{i}\pi} =\mathrm{1} \\ $$