Menu Close

x-0-2pi-2cos-2-x-sinx-1-0-x-




Question Number 11249 by uni last updated on 18/Mar/17
x∈(0,2π)  2cos^2 x +sinx−1=0 ⇒Σx=?
x(0,2π)2cos2x+sinx1=0Σx=?
Answered by ajfour last updated on 18/Mar/17
2−2sin^2 x+sin x−1=0  2sin^2 x−sin x−1=0  (2sin x+1)(sin x−1)=0  sin x=−(1/2) , 1  as  x ∈ (0,2π)  x= (π/2) , π+(π/6) , 2π−(π/6)   Σx = ((7π)/2)  .
22sin2x+sinx1=02sin2xsinx1=0(2sinx+1)(sinx1)=0sinx=12,1asx(0,2π)x=π2,π+π6,2ππ6Σx=7π2.
Answered by prakash jain last updated on 18/Mar/17
2(1−sin^2 x)+sin x−1=0  2−2sin^2 x+sin x−1=0  2sin^2 x−sin x−1=0  2sin^2 x−2sin x+sin x−1=0  2sin x(sin x−1)+(sin x−1)=0  (sin x−1)(2sin x+1)=0  sin x=1⇒x=(π/2)  sin x=−(1/2)⇒x=((5π)/6),((11π)/6)  Σx=(π/2)+((5π)/6)+((11π)/6)=((7π)/2)
2(1sin2x)+sinx1=022sin2x+sinx1=02sin2xsinx1=02sin2x2sinx+sinx1=02sinx(sinx1)+(sinx1)=0(sinx1)(2sinx+1)=0sinx=1x=π2sinx=12x=5π6,11π6Σx=π2+5π6+11π6=7π2

Leave a Reply

Your email address will not be published. Required fields are marked *