Question Number 135646 by metamorfose last updated on 14/Mar/21
$$\int\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right){ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)−{x}\:{dx}=…? \\ $$
Answered by Ñï= last updated on 15/Mar/21
$$\int\left[\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right){ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)−{x}\right]{dx} \\ $$$$=\int\left[\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)\left({ln}\left({x}+\mathrm{1}\right)−{lnx}\right)−{x}\right]{dx} \\ $$$$=\int\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right){ln}\left({x}+\mathrm{1}\right){dx}−\int\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right){lnxdx}−\int{xdx} \\ $$$$=\left(\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{x}\right){ln}\left({x}+\mathrm{1}\right)−\int\frac{{x}+\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}}{{x}+\mathrm{1}}{dx}−\left(\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{x}\right){lnx}+\int\frac{{x}+\frac{\mathrm{1}}{\mathrm{2}}}{{x}}{dx}−\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} \\ $$$$=\left(\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{x}\right){ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({x}^{\mathrm{2}} +{x}\right)−\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} +{C} \\ $$