Question Number 143964 by naka3546 last updated on 20/Jun/21
$${x}_{\mathrm{1}} \:{and}\:\:{x}_{\mathrm{2}} \:\:{are}\:\:{solutions}\:\:{of}\:\:{equality}\:: \\ $$$$\:\:\mathrm{cos}\:\left(\frac{\pi{x}+\pi}{\mathrm{6}}\right)\:−\:\mathrm{sin}\:\left(\frac{\pi{x}−\pi}{\mathrm{6}}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\sqrt{\mathrm{3}}\:\:\:,\:\:\:\mathrm{0}\:\leqslant\:{x}\:\leqslant\:\mathrm{12} \\ $$$${Find}\:\:{the}\:\:{value}\:\:{of}\:\:{x}_{\mathrm{1}} +\:{x}_{\mathrm{2}} \:. \\ $$
Commented by Canebulok last updated on 20/Jun/21
$$\: \\ $$$$\boldsymbol{{Solution}}: \\ $$$${By}\:{squaring}\:{both}\:{sides}, \\ $$$$\Rightarrow\:{cos}\left(\frac{\pi{x}}{\mathrm{6}}\:+\:\frac{\pi}{\mathrm{6}}\right)−{sin}\left(\frac{\pi{x}}{\mathrm{6}\:}\:−\:\frac{\pi}{\mathrm{6}}\right)\:=\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\Rightarrow\:\left[{cos}\left(\frac{\pi{x}}{\mathrm{6}}\right){cos}\left(\frac{\pi}{\mathrm{6}}\right)−{sin}\left(\frac{\pi{x}}{\mathrm{6}}\right){sin}\left(\frac{\pi}{\mathrm{6}}\right)\right]\:−\:\left[{sin}\left(\frac{\pi{x}}{\mathrm{6}}\right){cos}\left(\frac{\pi}{\mathrm{6}}\right)−{cos}\left(\frac{\pi{x}}{\mathrm{6}}\right){sin}\left(\frac{\pi}{\mathrm{6}}\right)\right]\:=\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$
Commented by Canebulok last updated on 20/Jun/21
$$\boldsymbol{{Solution}}: \\ $$$$\Rightarrow\:\left[{cos}\left(\frac{\pi{x}}{\mathrm{6}}\right){cos}\left(\frac{\pi}{\mathrm{6}}\right)−{sin}\left(\frac{\pi{x}}{\mathrm{6}}\right){cos}\left(\frac{\pi}{\mathrm{6}}\right)\right]\:+\:\left[{cos}\left(\frac{\pi{x}}{\mathrm{6}}\right){sin}\left(\frac{\pi}{\mathrm{6}}\right)−{sin}\left(\frac{\pi{x}}{\mathrm{6}}\right){sin}\left(\frac{\pi}{\mathrm{6}}\right)\right]\:=\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\Rightarrow\:{cos}\left(\frac{\pi}{\mathrm{6}}\right)\left[{cos}\left(\frac{\pi{x}}{\mathrm{6}}\right)−{sin}\left(\frac{\pi{x}}{\mathrm{6}}\right)\right]\:+\:{sin}\left(\frac{\pi}{\mathrm{6}}\right)\left[{cos}\left(\frac{\pi{x}}{\mathrm{6}}\right)−{sin}\left(\frac{\pi{x}}{\mathrm{6}}\right)\right]\:=\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\Rightarrow\:\left[{cos}\left(\frac{\pi}{\mathrm{6}}\right)+{sin}\left(\frac{\pi}{\mathrm{6}}\right)\right]\left[{cos}\left(\frac{\pi{x}}{\mathrm{6}}\right)−{sin}\left(\frac{\pi{x}}{\mathrm{6}}\right)\right]\:=\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\: \\ $$$${By}\:{squaring}\:{both}\:{sides}, \\ $$$$\Rightarrow\:\left[\mathrm{1}+\mathrm{2}{cos}\left(\frac{\pi}{\mathrm{6}}\right){sin}\left(\frac{\pi}{\mathrm{6}}\right)\right]\left[\mathrm{1}−\mathrm{2}{sin}\left(\frac{\pi{x}}{\mathrm{6}}\right){cos}\left(\frac{\pi{x}}{\mathrm{6}}\right)\right]\:=\:\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\Rightarrow\:\left[\mathrm{1}+{sin}\left(\frac{\pi}{\mathrm{3}}\right)\right]\left[\mathrm{1}−{sin}\left(\frac{\pi{x}}{\mathrm{3}}\right)\right]\:=\:\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\Rightarrow\:\mathrm{1}−{sin}\left(\frac{\pi{x}}{\mathrm{3}}\right)\:=\:\frac{\mathrm{3}}{\mathrm{4}\left[\mathrm{1}+{sin}\left(\frac{\pi}{\mathrm{3}}\right)\right]} \\ $$$$\: \\ $$$$\Rightarrow\:−{sin}\left(\frac{\pi{x}}{\mathrm{3}}\right)\:=\:\frac{\mathrm{3}}{\left(\mathrm{4}+\mathrm{4}{sin}\left(\frac{\pi}{\mathrm{3}}\right)\right)}\:−\:\mathrm{1} \\ $$$$\: \\ $$$$\Rightarrow\:{sin}\left(\frac{\pi{x}}{\mathrm{3}}\right)\:=\:\mathrm{1}\:−\:\frac{\mathrm{3}}{\left(\mathrm{4}+\mathrm{4}{sin}\left(\frac{\pi}{\mathrm{3}}\right)\right)} \\ $$$$\Rightarrow\:{arcsin}\left[\mathrm{1}−\frac{\mathrm{3}}{\left(\mathrm{4}+\mathrm{4}{sin}\left(\frac{\pi}{\mathrm{3}}\right)\right)}\right]\:=\:\frac{\pi{x}}{\mathrm{3}} \\ $$$$\Rightarrow\:{arcsin}\left[\mathrm{1}−\frac{\mathrm{3}}{\left(\mathrm{4}+\mathrm{4}{sin}\left(\frac{\pi}{\mathrm{3}}\right)\right)}\right]\:\left(\frac{\mathrm{3}}{\pi}\right)\:=\:{x} \\ $$$$\: \\ $$$$\sim\:{Kevin} \\ $$
Answered by bramlexs22 last updated on 20/Jun/21
$$\mathrm{sin}\:\left(\frac{\pi{x}−\pi}{\mathrm{6}}\right)=\mathrm{cos}\:\left(\frac{\mathrm{3}\pi−\pi{x}+\pi}{\mathrm{6}}\right)=\mathrm{cos}\:\left(\frac{\pi{x}−\mathrm{4}\pi}{\mathrm{6}}\right) \\ $$$$\Leftrightarrow\:\mathrm{cos}\:\left(\frac{\pi{x}+\pi}{\mathrm{6}}\right)−\mathrm{cos}\:\left(\frac{\pi{x}−\mathrm{4}\pi}{\mathrm{6}}\right)=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\Leftrightarrow−\mathrm{2sin}\:\left(\frac{\mathrm{2}\pi{x}−\mathrm{3}\pi}{\mathrm{12}}\right)\mathrm{sin}\:\left(\frac{\mathrm{5}\pi}{\mathrm{12}}\right)=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\Leftrightarrow\: \\ $$