Question Number 68095 by mhmd last updated on 04/Sep/19
$$\int\sqrt{{x}}/\mathrm{1}+\sqrt[{\mathrm{3}}]{{x}\:}\:{dx} \\ $$
Answered by MJS last updated on 05/Sep/19
$$\int\frac{{x}^{\mathrm{1}/\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{1}/\mathrm{3}} }{dx}= \\ $$$$\:\:\:\:\:\left[{t}={x}^{\mathrm{1}/\mathrm{6}} \:\rightarrow\:{dx}=\mathrm{6}{x}^{\mathrm{5}/\mathrm{6}} {dt}\right] \\ $$$$=\mathrm{6}\int\frac{{t}^{\mathrm{8}} }{{t}^{\mathrm{2}} +\mathrm{1}}{dt}=\mathrm{6}\int\left({t}^{\mathrm{6}} −{t}^{\mathrm{4}} +{t}^{\mathrm{2}} −\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{1}}\right){dt}= \\ $$$$=\frac{\mathrm{6}}{\mathrm{7}}{t}^{\mathrm{7}} −\frac{\mathrm{6}}{\mathrm{5}}{t}^{\mathrm{5}} +\mathrm{2}{t}^{\mathrm{3}} −\mathrm{6}{t}+\mathrm{6arctan}\:{t}\:= \\ $$$$=\frac{\mathrm{6}}{\mathrm{7}}{x}^{\mathrm{7}/\mathrm{6}} −\frac{\mathrm{6}}{\mathrm{5}}{x}^{\mathrm{5}/\mathrm{6}} +\mathrm{2}{x}^{\mathrm{1}/\mathrm{2}} −\mathrm{6}{x}^{\mathrm{1}/\mathrm{6}} +\mathrm{6arctan}\:{x}^{\mathrm{1}/\mathrm{6}} \:+{C} \\ $$