x-1-x-2-2-2x-2-1-find-solution- Tinku Tara June 3, 2023 Arithmetic 0 Comments FacebookTweetPin Question Number 134670 by benjo_mathlover last updated on 06/Mar/21 ∣x+1−x2∣=2(2x2−1)findsolution Answered by EDWIN88 last updated on 06/Mar/21 (1)1−x2⩾0⇒−1⩽x⩽1(2)letx=cost;t∈[0,π]∣cost+1−cos2t∣=2(2cos2t−1)∣cost+∣sint∣∣=2cos2t∣cost+sint∣=2cos2t(cost+sint)2=2cos22t;{cos2t⩾00⩽t⩽π(i)1+sin2t=2−2sin22t2sin22t+sin2t−1=0→{sin2t=−1sin2t=12{t=−π4+kπt=π12+kπ;t=5π12+kπ→t=π12;t=3π4{x=cosπ12=2+34=2+32x=cos3π4=−22thereforethesolutionisx=2+32x=−22 Commented by john_santu last updated on 06/Mar/21 ithinkitshouldbet∈[0,2π]thent=7π4∧t=13π12isthesolution Answered by benjo_mathlover last updated on 06/Mar/21 ∣x+1−x2∣=2(2x2−1)⇒x+1−x2=±2(2x2−1)⇒1−x2=−x±2(2x2−1)squaring⇒1−x2=x2±22x(2x2−1)+2(2x2−1)2⇒0=2x2−1±22x(2x2−1)+2(2x2−1)2⇒0=(2x2−1)[1±2x2+2(2x2−1)](i)2x2=1;x1,2=±22→{≈0.707≈−0.707(ii)4x2±22x−1=0→{x3,4=−22±268=−2±64{≈0.25≈−0.965x5,6=2±64→{≈0.965≈−0.25(iii)for1−x2definedon−1⩽x⩽1(iv)2x2−1⩾0;x⩽−22∪x⩾22solutionis{±22;−2±64;2±64} Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: N-lim-x-1-x-2-1-x-1-x-3-1-Next Next post: 1-1-4-6-8-10-12-14-16-18-20-22-S-900- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.