Menu Close

x-12-log-3-x-x-18-log-2-x-find-x-




Question Number 138690 by KwesiDerek last updated on 16/Apr/21
((x/(12)))^(log_(√3) x) =((x/(18)))^(log_(√2) x)   find x
(x12)log3x=(x18)log2xfindx
Commented by liberty last updated on 16/Apr/21
x=36 ⇒(((36)/(12)))^(log _(√3) (36)) = 3^(log _3 (36)^2 ) =36^2   ⇒(((36)/(18)))^(log _(√2) (36)) = (2)^(log _2 (36)^2 ) = 36^2
x=36(3612)log3(36)=3log3(36)2=362(3618)log2(36)=(2)log2(36)2=362
Answered by liberty last updated on 16/Apr/21
x^(log _(√(3 )) ((x/(12))))  = x^(log _(√2) ((x/(18))))   ⇒ log _3 ((x/(12)))= log _2 ((x/(18)))  ⇒ ((ln x−ln 12)/(ln 3)) = ((ln x−ln 18)/(ln 2))  ⇒ln 2(ln x−ln 12)=ln 3(ln x−ln 18)  ⇒ln x(ln 2−ln 3)=ln 2 ln 12−ln 3 ln 18  ⇒ln x = ((ln 2(2ln 2+ln 3)−ln 3(2ln 3+ln 2) )/(ln 2−ln 3))  ln x = ((2ln^2 2+ln 2 ln 3−2ln^2 3−ln 2 ln 3)/(ln 2−ln 3))  ln x = ((2(ln 2−ln 3)(ln 2+ln 3))/(ln 2−ln 3))  ⇔ ln x = ln 36 ; x=36
xlog3(x12)=xlog2(x18)log3(x12)=log2(x18)lnxln12ln3=lnxln18ln2ln2(lnxln12)=ln3(lnxln18)lnx(ln2ln3)=ln2ln12ln3ln18lnx=ln2(2ln2+ln3)ln3(2ln3+ln2)ln2ln3lnx=2ln22+ln2ln32ln23ln2ln3ln2ln3lnx=2(ln2ln3)(ln2+ln3)ln2ln3lnx=ln36;x=36

Leave a Reply

Your email address will not be published. Required fields are marked *