Menu Close

x-2-1-y-n-n-1-y-0-n-N-Find-solution-that-can-be-expanded-in-series-help-me-




Question Number 137129 by Chhing last updated on 30/Mar/21
   (x^2 −1)y′′−n(n+1)y=0   ,  n∈N  Find solution that can be expanded in series  help me
(x21)yn(n+1)y=0,nNFindsolutionthatcanbeexpandedinserieshelpme
Answered by mathmax by abdo last updated on 31/Mar/21
y =Σ_(n=0) ^∞ a_n x^n  ⇒y^′  =Σ_(n=1) ^∞  na_n x^(n−1)  and y^(′′)  =Σ_(n=2) ^∞ n(n−1)a_n x^(n−2)   e ⇒(x^2 −1)Σ_(n=2) ^∞  n(n−1)a_n x^(n−2) −p(p+1)Σ_(n=0) ^∞  a_n x^n  =0 ⇒  Σ_(n=2) ^∞ n(n−1)a_n x^n  −Σ_(n=2) ^∞ n(n−1)a_n x^(n−2)  −p(p+1)Σ_(n=0) ^∞  a_n x^n  =0 ⇒  Σ_(n=2) ^∞ {n(n−1)−p(p+1)}a_n x^n −p(p+1)−p(p+1)a_1 x  −Σ_(n=0) ^∞ (n+2)(n+1)a_(n+2) x^n  =0 ⇒  2a_2 +6a_3 x +Σ_(n=2) ^∞ {(n(n−1)−p(p+1))a_n −(n+2)(n+1)a_(n+2) }x^n   −p(p+1)−p(p+1)a_1 x+2a_2  +6a_3 x =0 ⇒  ⇒(n^2 −p^2 −n−p)a_n −(n+1)(n+2)a_(n+2) =0 ∀n≥2 and  −p(p+1) +2a_2 =0 and(6a_3 −p(p+1)a_1 )=0  ...be continued...
y=n=0anxny=n=1nanxn1andy=n=2n(n1)anxn2e(x21)n=2n(n1)anxn2p(p+1)n=0anxn=0n=2n(n1)anxnn=2n(n1)anxn2p(p+1)n=0anxn=0n=2{n(n1)p(p+1)}anxnp(p+1)p(p+1)a1xn=0(n+2)(n+1)an+2xn=02a2+6a3x+n=2{(n(n1)p(p+1))an(n+2)(n+1)an+2}xnp(p+1)p(p+1)a1x+2a2+6a3x=0(n2p2np)an(n+1)(n+2)an+2=0n2andp(p+1)+2a2=0and(6a3p(p+1)a1)=0becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *