Question Number 138627 by KwesiDerek last updated on 15/Apr/21
$$\boldsymbol{\mathrm{x}}^{\mathrm{2}} =\mathrm{16}^{\boldsymbol{\mathrm{x}}} \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{x}} \\ $$
Commented by soudo last updated on 15/Apr/21
$$\mathrm{nice} \\ $$
Answered by mr W last updated on 15/Apr/21
$${x}=\pm\mathrm{16}^{\frac{{x}}{\mathrm{2}}} =\pm\mathrm{4}^{{x}} \\ $$$${x}=\pm{e}^{{x}\mathrm{ln}\:\mathrm{4}} \\ $$$$\left(−{x}\mathrm{ln}\:\mathrm{4}\right){e}^{−{x}\mathrm{ln}\:\mathrm{4}} =\pm\mathrm{ln}\:\mathrm{4} \\ $$$$−{x}\mathrm{ln}\:\mathrm{4}=\mathbb{W}\left(\pm\mathrm{ln}\:\mathrm{4}\right) \\ $$$$\Rightarrow{x}=−\frac{\mathbb{W}\left(\pm\mathrm{ln}\:\mathrm{4}\right)}{\mathrm{ln}\:\mathrm{4}}=\begin{cases}{−\frac{\mathbb{W}\left(\mathrm{ln}\:\mathrm{4}\right)}{\mathrm{ln}\:\mathrm{4}}=−\frac{\mathrm{1}}{\mathrm{2}}}\\{−\frac{\mathbb{W}\left(−\mathrm{ln}\:\mathrm{4}\right)}{\mathrm{ln}\:\mathrm{4}}\Rightarrow{no}\:{real}}\end{cases} \\ $$
Commented by KwesiDerek last updated on 15/Apr/21
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by MJS_new last updated on 16/Apr/21
$${x}^{\mathrm{2}} −\mathrm{16}^{{x}} =\mathrm{0} \\ $$$$\left({x}−\mathrm{4}^{{x}} \right)\left({x}+\mathrm{4}^{{x}} \right)=\mathrm{0} \\ $$$${x}−\mathrm{4}^{{x}} =\mathrm{0}\vee{x}+\mathrm{4}^{{x}} =\mathrm{0} \\ $$$${f}_{\mathrm{1}} \left({x}\right)={x}−\mathrm{4}^{{x}} \\ $$$${f}_{\mathrm{1}} '\left({x}\right)=\mathrm{1}−\mathrm{4}^{{x}} \mathrm{ln}\:\mathrm{4}\:=\mathrm{0}\:\Rightarrow\:{x}_{\mathrm{0}} =−\frac{\mathrm{ln}\:\mathrm{ln}\:\mathrm{4}}{\mathrm{ln}\:\mathrm{4}} \\ $$$${f}_{\mathrm{1}} ''\left({x}\right)<\mathrm{0}\:\forall{x}\in\mathbb{R}\:\Rightarrow\:\mathrm{max}\:\mathrm{at}\:{x}_{\mathrm{0}} \:\mathrm{with}\:{f}_{\mathrm{1}} \left({x}_{\mathrm{0}} \right)<\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{no}\:\mathrm{solution}\:\mathrm{for}\:{f}_{\mathrm{1}} \left({x}\right)=\mathrm{0} \\ $$$${f}_{\mathrm{2}} \left({x}\right)={x}+\mathrm{4}^{{x}} \\ $$$${f}_{\mathrm{2}} '\left({x}\right)=\mathrm{1}+\mathrm{4}^{{x}} \mathrm{ln}\:\mathrm{4}\:>\mathrm{0}\:\forall{x}\in\mathbb{R}\:\wedge\:−\infty<{f}_{\mathrm{2}} \left({x}\right)<+\infty\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{exactly}\:\mathrm{one}\:\mathrm{solution}\:\mathrm{for}\:{f}_{\mathrm{2}} \left({x}\right)=\mathrm{0} \\ $$$${x}=−\mathrm{4}^{{x}} \:\Leftrightarrow\:{x}=−\mathrm{2}^{\mathrm{2}{x}} \:\Rightarrow\:\mathrm{obviously}\:{x}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$