Menu Close

x-2-16-x-find-x-




Question Number 138627 by KwesiDerek last updated on 15/Apr/21
x^2 =16^x   find x
\boldsymbolx2=16\boldsymbolx\boldsymbolfind\boldsymbolx
Commented by soudo last updated on 15/Apr/21
nice
nice
Answered by mr W last updated on 15/Apr/21
x=±16^(x/2) =±4^x   x=±e^(xln 4)   (−xln 4)e^(−xln 4) =±ln 4  −xln 4=W(±ln 4)  ⇒x=−((W(±ln 4))/(ln 4))= { ((−((W(ln 4))/(ln 4))=−(1/2))),((−((W(−ln 4))/(ln 4))⇒no real)) :}
x=±16x2=±4xx=±exln4(xln4)exln4=±ln4xln4=W(±ln4)x=W(±ln4)ln4={W(ln4)ln4=12W(ln4)ln4noreal
Commented by KwesiDerek last updated on 15/Apr/21
thank you sir
thankyousir
Answered by MJS_new last updated on 16/Apr/21
x^2 −16^x =0  (x−4^x )(x+4^x )=0  x−4^x =0∨x+4^x =0  f_1 (x)=x−4^x   f_1 ′(x)=1−4^x ln 4 =0 ⇒ x_0 =−((ln ln 4)/(ln 4))  f_1 ′′(x)<0 ∀x∈R ⇒ max at x_0  with f_1 (x_0 )<0  ⇒ no solution for f_1 (x)=0  f_2 (x)=x+4^x   f_2 ′(x)=1+4^x ln 4 >0 ∀x∈R ∧ −∞<f_2 (x)<+∞ ⇒  ⇒ exactly one solution for f_2 (x)=0  x=−4^x  ⇔ x=−2^(2x)  ⇒ obviously x=−(1/2)
x216x=0(x4x)(x+4x)=0x4x=0x+4x=0f1(x)=x4xf1(x)=14xln4=0x0=lnln4ln4f1(x)<0xRmaxatx0withf1(x0)<0nosolutionforf1(x)=0f2(x)=x+4xf2(x)=1+4xln4>0xR<f2(x)<+exactlyonesolutionforf2(x)=0x=4xx=22xobviouslyx=12

Leave a Reply

Your email address will not be published. Required fields are marked *