Menu Close

x-2-2x-1-1-2-dx-




Question Number 8762 by tawakalitu last updated on 26/Oct/16
∫x^2 (2x + 1)^(1/2)  dx
$$\int\mathrm{x}^{\mathrm{2}} \left(\mathrm{2x}\:+\:\mathrm{1}\right)^{\mathrm{1}/\mathrm{2}} \:\mathrm{dx} \\ $$
Answered by sou1618 last updated on 26/Oct/16
I=∫x^2 (√(2x+1))dx  t=2x+1  x=((t−1)/2)⇒x^2 =((t^2 −2t+1)/4)  dx=(1/2)dt  I=∫((t^2 −2t+1)/4)(√t)×(1/2)dt    =(1/8)∫t^(5/2) −2t^(3/2) +t^(1/2) dt  ....continue
$${I}=\int{x}^{\mathrm{2}} \sqrt{\mathrm{2}{x}+\mathrm{1}}{dx} \\ $$$${t}=\mathrm{2}{x}+\mathrm{1} \\ $$$${x}=\frac{{t}−\mathrm{1}}{\mathrm{2}}\Rightarrow{x}^{\mathrm{2}} =\frac{{t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{1}}{\mathrm{4}} \\ $$$${dx}=\frac{\mathrm{1}}{\mathrm{2}}{dt} \\ $$$${I}=\int\frac{{t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{1}}{\mathrm{4}}\sqrt{{t}}×\frac{\mathrm{1}}{\mathrm{2}}{dt} \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{8}}\int{t}^{\mathrm{5}/\mathrm{2}} −\mathrm{2}{t}^{\mathrm{3}/\mathrm{2}} +{t}^{\mathrm{1}/\mathrm{2}} {dt} \\ $$$$….{continue} \\ $$
Commented by tawakalitu last updated on 26/Oct/16
Thank you sir. God bless you
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *