Menu Close

x-2-f-x-f-x-2-f-x-




Question Number 1988 by Rasheed Soomro last updated on 28/Oct/15
x^2 = ((f(x)+f(−x))/2)  f(x)=?
x2=f(x)+f(x)2f(x)=?
Answered by 123456 last updated on 28/Oct/15
supossing that f is poly  f(x)=Σ_(i=0) ^n a_i x^i   f(−x)=Σ_(i=0) ^n a_i (−1)^i x^i   x^2 =((f(x)+f(−x))/2)  f(x)+f(−x)=2x^2   Σ_(i=0) ^n a_i x^i +Σ_(i=0) ^n a_i (−1)^i x^i =2x^2    (n≥2)  Σ_(i=0) ^n a_i [1+(−1)^i ]x^i =2x^2   i≠2⇒a_i [1+(−1)^i ]=0⇒a_i =0∨i≡1(mod 2)  i=2⇒2a_2 =2⇒a_2 =1  so  f(x)=Σ_(i=0) ^n a_i x^i ,a_i = { ((∀a_i ,i≡1(mod 2))),((a_i =0,i≡0(mod 2)∨i≠2)),((a_2 =1)) :}  −−−−−−−−−  f(x)=a_1 x+x^2 +a_3 x^3 +a_5 x^5 +∙∙∙  f(−x)=−a_1 x+x^2 −a_3 x^3 −a_5 x^5 −∙∙∙  f(x)+f(−x)=2x^2   ((f(x)+f(−x))/2)=x^2
supossingthatfispolyf(x)=ni=0aixif(x)=ni=0ai(1)ixix2=f(x)+f(x)2f(x)+f(x)=2x2ni=0aixi+ni=0ai(1)ixi=2x2(n2)ni=0ai[1+(1)i]xi=2x2i2ai[1+(1)i]=0ai=0i1(mod2)i=22a2=2a2=1sof(x)=ni=0aixi,ai={ai,i1(mod2)ai=0,i0(mod2)i2a2=1f(x)=a1x+x2+a3x3+a5x5+f(x)=a1x+x2a3x3a5x5f(x)+f(x)=2x2f(x)+f(x)2=x2
Answered by prakash jain last updated on 28/Oct/15
Let g(x) be any odd function.  g(x)=−g(−x)  f(x)=x^2 +g(x)  f(−x)=x^2 +g(−x)=x^2 −g(x)  ((f(x)+f(−x))/2)=x^2   examples  f(x)=x^2 +sin x  f(x)=x^2 +Σ_(i=0) ^n a_i x^(2i+1)
Letg(x)beanyoddfunction.g(x)=g(x)f(x)=x2+g(x)f(x)=x2+g(x)=x2g(x)f(x)+f(x)2=x2examplesf(x)=x2+sinxf(x)=x2+ni=0aix2i+1

Leave a Reply

Your email address will not be published. Required fields are marked *