Menu Close

x-2-x-1-3-5-7-9-11-13-x-2-2x-48-find-all-x-real-that-is-solution-of-above-equation-




Question Number 733 by 123456 last updated on 05/Mar/15
∣∣∣∣∣∣∣x^2 −x−1∣−3∣−5∣−7∣−9∣−11∣−13∣  =x^2 −2x−48  find all x real that is solution of above  equation
∣∣∣∣∣∣∣x2x135791113=x22x48findallxrealthatissolutionofaboveequation
Answered by prakash jain last updated on 05/Mar/15
x^2 −2x−48=(x−8)(x+6)  (x−8)(x+6)≥0 for x≥8 or x≤−6  Case I: x≥8  x^2 −x−1>0  ...  x^2 −x−49>0  x^2 −x−49=x^2 −2x−48  x=1 ⇒ No solution for x≥8  Case II: x≤−6  x^2 −x−1>0  ...  x^2 −x−36>0  x^2 −x−49=(x−((1+(√(197)))/2))(x−((1−(√(197)))/2))  x^2 −x−49≥0 gives only solution x=1 −6  x^2 −x−49<0   −x^2 +x+49=x^2 −2x−48  2x^2 −3x−97=0  Root for x≤−6  x=((3−(√(9+8×97)))/4)=((3−(√(9+776)))/4)=((3−(√(785)))/4)  ((3−(√(785)))/4)−((1+(√(197)))/2)=((3−(√(785))−2−(√(788)))/4)<0  ((3−(√(785)))/4)−((1−(√(197)))/2)=((3−(√(785))−2+(√(788)))/4)>0  x^2 −x−49<0 for x=((3−(√(785)))/4)   ((3−(√(785)))/4)+6=((27−(√(785)))/4)=(((√(729))−(√(785)))/4)<0  ((3−(√(785)))/4)<−6 and x^2 −x−49<0 for x=((3−(√(785)))/4)  so it a valid solution.  Solution for real x  x=((3−(√(785)))/4)
x22x48=(x8)(x+6)(x8)(x+6)0forx8orx6CaseI:x8x2x1>0x2x49>0x2x49=x22x48x=1Nosolutionforx8CaseII:x6x2x1>0x2x36>0x2x49=(x1+1972)(x11972)x2x490givesonlysolutionx=16x2x49<0x2+x+49=x22x482x23x97=0Rootforx6x=39+8×974=39+7764=37854378541+1972=378527884<03785411972=37852+7884>0x2x49<0forx=3785437854+6=277854=7297854<037854<6andx2x49<0forx=37854soitavalidsolution.Solutionforrealxx=37854

Leave a Reply

Your email address will not be published. Required fields are marked *