Menu Close

x-2-x-1-3-5-7-9-11-13-x-2-2x-48-find-all-x-real-that-is-solution-of-above-equation-




Question Number 733 by 123456 last updated on 05/Mar/15
∣∣∣∣∣∣∣x^2 −x−1∣−3∣−5∣−7∣−9∣−11∣−13∣  =x^2 −2x−48  find all x real that is solution of above  equation
$$\mid\mid\mid\mid\mid\mid\mid{x}^{\mathrm{2}} −{x}−\mathrm{1}\mid−\mathrm{3}\mid−\mathrm{5}\mid−\mathrm{7}\mid−\mathrm{9}\mid−\mathrm{11}\mid−\mathrm{13}\mid \\ $$$$={x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{48} \\ $$$${find}\:{all}\:{x}\:{real}\:{that}\:{is}\:{solution}\:{of}\:{above} \\ $$$${equation} \\ $$
Answered by prakash jain last updated on 05/Mar/15
x^2 −2x−48=(x−8)(x+6)  (x−8)(x+6)≥0 for x≥8 or x≤−6  Case I: x≥8  x^2 −x−1>0  ...  x^2 −x−49>0  x^2 −x−49=x^2 −2x−48  x=1 ⇒ No solution for x≥8  Case II: x≤−6  x^2 −x−1>0  ...  x^2 −x−36>0  x^2 −x−49=(x−((1+(√(197)))/2))(x−((1−(√(197)))/2))  x^2 −x−49≥0 gives only solution x=1 −6  x^2 −x−49<0   −x^2 +x+49=x^2 −2x−48  2x^2 −3x−97=0  Root for x≤−6  x=((3−(√(9+8×97)))/4)=((3−(√(9+776)))/4)=((3−(√(785)))/4)  ((3−(√(785)))/4)−((1+(√(197)))/2)=((3−(√(785))−2−(√(788)))/4)<0  ((3−(√(785)))/4)−((1−(√(197)))/2)=((3−(√(785))−2+(√(788)))/4)>0  x^2 −x−49<0 for x=((3−(√(785)))/4)   ((3−(√(785)))/4)+6=((27−(√(785)))/4)=(((√(729))−(√(785)))/4)<0  ((3−(√(785)))/4)<−6 and x^2 −x−49<0 for x=((3−(√(785)))/4)  so it a valid solution.  Solution for real x  x=((3−(√(785)))/4)
$${x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{48}=\left({x}−\mathrm{8}\right)\left({x}+\mathrm{6}\right) \\ $$$$\left({x}−\mathrm{8}\right)\left({x}+\mathrm{6}\right)\geqslant\mathrm{0}\:\mathrm{for}\:{x}\geqslant\mathrm{8}\:\mathrm{or}\:{x}\leqslant−\mathrm{6} \\ $$$$\mathrm{Case}\:\mathrm{I}:\:{x}\geqslant\mathrm{8} \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{1}>\mathrm{0} \\ $$$$… \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{49}>\mathrm{0} \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{49}={x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{48} \\ $$$${x}=\mathrm{1}\:\Rightarrow\:\mathrm{No}\:\mathrm{solution}\:\mathrm{for}\:{x}\geqslant\mathrm{8} \\ $$$$\mathrm{Case}\:\mathrm{II}:\:{x}\leqslant−\mathrm{6} \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{1}>\mathrm{0} \\ $$$$… \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{36}>\mathrm{0} \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{49}=\left({x}−\frac{\mathrm{1}+\sqrt{\mathrm{197}}}{\mathrm{2}}\right)\left({x}−\frac{\mathrm{1}−\sqrt{\mathrm{197}}}{\mathrm{2}}\right) \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{49}\geqslant\mathrm{0}\:\mathrm{gives}\:\mathrm{only}\:\mathrm{solution}\:{x}=\mathrm{1} −\mathrm{6} \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{49}<\mathrm{0}\: \\ $$$$−{x}^{\mathrm{2}} +{x}+\mathrm{49}={x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{48} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{97}=\mathrm{0} \\ $$$$\mathrm{Root}\:\mathrm{for}\:{x}\leqslant−\mathrm{6} \\ $$$${x}=\frac{\mathrm{3}−\sqrt{\mathrm{9}+\mathrm{8}×\mathrm{97}}}{\mathrm{4}}=\frac{\mathrm{3}−\sqrt{\mathrm{9}+\mathrm{776}}}{\mathrm{4}}=\frac{\mathrm{3}−\sqrt{\mathrm{785}}}{\mathrm{4}} \\ $$$$\frac{\mathrm{3}−\sqrt{\mathrm{785}}}{\mathrm{4}}−\frac{\mathrm{1}+\sqrt{\mathrm{197}}}{\mathrm{2}}=\frac{\mathrm{3}−\sqrt{\mathrm{785}}−\mathrm{2}−\sqrt{\mathrm{788}}}{\mathrm{4}}<\mathrm{0} \\ $$$$\frac{\mathrm{3}−\sqrt{\mathrm{785}}}{\mathrm{4}}−\frac{\mathrm{1}−\sqrt{\mathrm{197}}}{\mathrm{2}}=\frac{\mathrm{3}−\sqrt{\mathrm{785}}−\mathrm{2}+\sqrt{\mathrm{788}}}{\mathrm{4}}>\mathrm{0} \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{49}<\mathrm{0}\:\mathrm{for}\:{x}=\frac{\mathrm{3}−\sqrt{\mathrm{785}}}{\mathrm{4}}\: \\ $$$$\frac{\mathrm{3}−\sqrt{\mathrm{785}}}{\mathrm{4}}+\mathrm{6}=\frac{\mathrm{27}−\sqrt{\mathrm{785}}}{\mathrm{4}}=\frac{\sqrt{\mathrm{729}}−\sqrt{\mathrm{785}}}{\mathrm{4}}<\mathrm{0} \\ $$$$\frac{\mathrm{3}−\sqrt{\mathrm{785}}}{\mathrm{4}}<−\mathrm{6}\:\mathrm{and}\:{x}^{\mathrm{2}} −{x}−\mathrm{49}<\mathrm{0}\:\mathrm{for}\:{x}=\frac{\mathrm{3}−\sqrt{\mathrm{785}}}{\mathrm{4}} \\ $$$$\mathrm{so}\:\mathrm{it}\:\mathrm{a}\:\mathrm{valid}\:\mathrm{solution}. \\ $$$$\mathrm{Solution}\:\mathrm{for}\:\mathrm{real}\:{x} \\ $$$${x}=\frac{\mathrm{3}−\sqrt{\mathrm{785}}}{\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *