Menu Close

x-2-x-3-4-find-x-




Question Number 138135 by Deepak1298 last updated on 10/Apr/21
(x^2 +x^3 )=4  find x.
(x2+x3)=4findx.
Answered by ajfour last updated on 10/Apr/21
let x=(4/t)  ((16)/t^2 )+((64)/t^3 )=4  ⇒ ((4t+16)/t^3 )=1  ⇒ t^3 −4t−16=0  If  t^3 +pt+q=0  t=(−(q/2)+(√((q^2 /4)+(p^3 /(27)))))^(1/3)      +(−(q/2)−(√((q^2 /4)+(p^3 /(27)))))^(1/3)   here  =p=−4, q=−16  so  t=(8+(√(64−((64)/(27)))))^(1/3)            +(8−(√(64−((64)/(27)))))^(1/3)   t=(8+((8(√(26)))/(3(√3))))^(1/3) +(8−((8(√(26)))/(3(√3))))^(1/3)   x=(4/t)  x=(4/((8+((8(√(26)))/(3(√3))))^(1/3) +(8−((8(√(26)))/(3(√3))))^(1/3) ))  x=(2/((1+(√((26)/(27))))^(1/3) +(1−(√((26)/(27))))^(1/3) ))  x≈1.3146
letx=4t16t2+64t3=44t+16t3=1t34t16=0Ift3+pt+q=0t=(q2+q24+p327)1/3+(q2q24+p327)1/3here=p=4,q=16sot=(8+646427)1/3+(8646427)1/3t=(8+82633)1/3+(882633)1/3x=4tx=4(8+82633)1/3+(882633)1/3x=2(1+2627)1/3+(12627)1/3x1.3146

Leave a Reply

Your email address will not be published. Required fields are marked *