Menu Close

x-2-x-4-x-2-x-4-9-find-the-equation-has-multiple-roots-




Question Number 11500 by @ANTARES_VY last updated on 27/Mar/17
(x^2 +x−4)(x^2 +x+4)=9  find  the  equation  has  multiple  roots.
(x2+x4)(x2+x+4)=9findtheequationhasmultipleroots.
Answered by ridwan balatif last updated on 27/Mar/17
((x^2 +x)−4)((x^2 +x)+4)=9  (x^2 +x)^2 −16=9  (x^2 +x)^2 −25=0  ((x^2 +x)−5)((x^2 +x)+5)=0  (i) x^2 +x−5=0  D=b^2 −4ac      =1^2 −4(1)(−5)      =21  x_(1,2) =((−b±(√D))/(2a))          =((−1±(√(21)))/2)  x_1 =((−1+(√(21)))/2)  x_2 =−(((1+(√(21)))/2))  (ii) x^2 +x+5=0  D=b^2 −4ac      =1^2 −4(1)(5)      =−19 (IMPOSSIBLE)  point (ii) has no roots
((x2+x)4)((x2+x)+4)=9(x2+x)216=9(x2+x)225=0((x2+x)5)((x2+x)+5)=0(i)x2+x5=0D=b24ac=124(1)(5)=21x1,2=b±D2a=1±212x1=1+212x2=(1+212)(ii)x2+x+5=0D=b24ac=124(1)(5)=19(IMPOSSIBLE)point(ii)hasnoroots
Commented by @ANTARES_VY last updated on 27/Mar/17
The  answer  is: −5.
Theansweris:5.
Commented by @ANTARES_VY last updated on 27/Mar/17
error
error
Commented by mrW1 last updated on 27/Mar/17
please explain what you mean with  your question.
pleaseexplainwhatyoumeanwithyourquestion.
Commented by mrW1 last updated on 27/Mar/17
then your question should be: find the  product of the real roots of the  equation.
thenyourquestionshouldbe:findtheproductoftherealrootsoftheequation.
Commented by @ANTARES_VY last updated on 27/Mar/17
x_1 ×x_2 =?
x1×x2=?
Commented by mrW1 last updated on 27/Mar/17
yes.  x_1 ×x_2 =−5
yes.x1×x2=5
Commented by sandy_suhendra last updated on 27/Mar/17
from the answer of Mr Ridwan Balatif  x^2 +x+5=0 has 2 imaginary roots because D<0  x^2 +x−5=0 has 2 real roots x_1  and x_2  because D>0       so x_1 .x_2  = (c/a) = ((−5)/1) = −5
fromtheanswerofMrRidwanBalatifx2+x+5=0has2imaginaryrootsbecauseD<0x2+x5=0has2realrootsx1andx2becauseD>0sox1.x2=ca=51=5
Answered by ajfour last updated on 27/Mar/17
x=((−1±(√(1±20)))/2) .
x=1±1±202.

Leave a Reply

Your email address will not be published. Required fields are marked *