Question Number 67844 by aliesam last updated on 01/Sep/19
$${x}^{\mathrm{2}} +\mid{x}\mid−\mathrm{6}=\mathrm{0} \\ $$
Commented by gunawan last updated on 01/Sep/19
$$\mathrm{case}\:\mathrm{1}\:{x}<\mathrm{0} \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{6}=\mathrm{0} \\ $$$$\left({x}−\mathrm{3}\right)\left({x}+\mathrm{2}\right)=\mathrm{0} \\ $$$${x}=\mathrm{3}\:\vee{x}=−\mathrm{2} \\ $$$$\mathrm{solution} \\ $$$$\left(\mathrm{2}\right)^{\mathrm{2}} +\mid−\mathrm{2}\mid−\mathrm{6}=\mathrm{0} \\ $$$$\left(\mathrm{3}\right)^{\mathrm{2}} +\mid\mathrm{3}\mid−\mathrm{6}\neq\mathrm{0} \\ $$$$\mathrm{solution}\:{x}=−\mathrm{2} \\ $$$$\mathrm{case}\:\mathrm{2}\:{x}\:>\mathrm{0} \\ $$$${x}^{\mathrm{2}} +{x}−\mathrm{6}=\mathrm{0} \\ $$$$\left({x}+\mathrm{3}\right)\left({x}−\mathrm{2}\right)=\mathrm{0} \\ $$$${x}=−\mathrm{3}\:\vee\:{x}=\mathrm{2} \\ $$$$\mathrm{2}^{\mathrm{2}} +\mid\mathrm{2}\mid−\mathrm{6}=\mathrm{0} \\ $$$$\left(−\mathrm{3}\right)^{\mathrm{2}} +\mid−\mathrm{3}\mid−\mathrm{6}\neq\mathrm{0} \\ $$$$\mathrm{solution}\:\mathrm{is} \\ $$$${x}=\mathrm{2}\:\mathrm{or}\:{x}=−\mathrm{2} \\ $$
Commented by mathmax by abdo last updated on 01/Sep/19
$$\left({e}\right)\Rightarrow\mid{x}\mid^{\mathrm{2}} +\mid{x}\mid−\mathrm{6}\:\:\:{let}\:\mid{x}\mid\:={t}\:\:{with}\:{t}\geqslant\mathrm{0}\:\Rightarrow{t}^{\mathrm{2}} +{t}−\mathrm{6}\:=\mathrm{0} \\ $$$$\Delta\:=\mathrm{1}−\mathrm{4}\left(−\mathrm{6}\right)\:=\mathrm{25}\:\Rightarrow{t}_{\mathrm{1}} =\frac{−\mathrm{1}+\mathrm{5}}{\mathrm{2}}\:=\mathrm{2}\:\:{and}\:{t}_{\mathrm{2}} =\frac{−\mathrm{1}−\mathrm{5}}{\mathrm{2}}\:=−\mathrm{3}<\mathrm{0}\left({to}\right. \\ $$$$\left.{eliminate}\right)\:\:{and}\:\mid{x}\mid\:=\mathrm{2}\:\Rightarrow{x}\:=\mathrm{2}\:{or}\:{x}\:=−\mathrm{2}\:. \\ $$