Menu Close

x-2-y-1-x-z-0-y-1-y-z-find-x-N-such-that-equation-is-true-




Question Number 826 by 123456 last updated on 18/Mar/15
x^2 =Σ_(y=1) ^x Π_(z=0) ^(y−1) (y−z)  find x∈N^∗  such that equation is  true
x2=xy=1y1z=0(yz)findxNsuchthatequationistrue
Commented by 123456 last updated on 18/Mar/15
Π_(z=0) ^(y−1) (y−z)  z=0⇒y−z=y  z=y−1⇒y−z=1  Π_(z=0) ^(y−1) (y−z)=y!  Σ_(y=1) ^x Π_(z=0) ^(y−1) (y−z)=Σ_(y=1) ^x y!=1!+2!+∙∙∙+x!  x^2 =1!+∙∙∙+x!
y1z=0(yz)z=0yz=yz=y1yz=1y1z=0(yz)=y!xy=1y1z=0(yz)=xy=1y!=1!+2!++x!x2=1!++x!
Answered by prakash jain last updated on 18/Mar/15
x=3 and  x=1 are solutions.  x!>x^2   for x≥4  x=4 , x!=24, x^2 =16,  x!>x^2   If x!>x^2  then for x>4  ⇒(x+1)!=x!(x+1)>x^2 (x+1)=x^2 +x^3           =x^2 +x^3 −1+1=x^2 +1+(x−1)(x^2 +x+1)          >x^2 +1+x^2 +x+1 >x^2 +1+x+x+1 ∵x^2 >x ∧x>1         >(x+1)^2 +1>(x+1)^2   So there is no solution for x≥4.
x=3andx=1aresolutions.x!>x2forx4x=4,x!=24,x2=16,x!>x2Ifx!>x2thenforx>4(x+1)!=x!(x+1)>x2(x+1)=x2+x3=x2+x31+1=x2+1+(x1)(x2+x+1)>x2+1+x2+x+1>x2+1+x+x+1x2>xx>1>(x+1)2+1>(x+1)2Sothereisnosolutionforx4.

Leave a Reply

Your email address will not be published. Required fields are marked *