x-2-y-3-z-4-have-integer-solutions- Tinku Tara June 3, 2023 Number Theory FacebookTweetPin Question Number 425 by 123456 last updated on 25/Jan/15 x2+y3=z4haveintegersolutions? Answered by prakash jain last updated on 02/Jan/15 Assumingwearelookingfor+vesolutionsy3=(z2−x)(z2+x)Tofindasolutionweneedtofactorizey3=b×a(b⩾a)suchthata+b−a2isaperfectsquareorb+a2isperfectsquare.Thenz=b+a2x=b−a2y=b×a3Tryingwithmultiplevalueofy,y=8givesonesolutiony3=83=8×64,a=8,b=64z=a+b2=6x=64−82=28x=28,y=8,z=6Alsoifx,y,zisasolutionthenn6x,n4y,n3zalsoisasolution.Othesolutionwithhighervaluesofy.x=27,y=18,z=9y3=54×108 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: sin-4-pi-16-sin-4-3pi-16-sin-4-5pi-16-sin-4-7pi-16-Next Next post: Given-f-x-f-x-pi-6-x-R-if-0-pi-6-f-x-dx-T-find-the-value-of-pi-4pi-3-f-x-pi-dx-nice-integral-