Menu Close

x-2-y-3-z-4-have-integer-solutions-




Question Number 425 by 123456 last updated on 25/Jan/15
x^2 +y^3 =z^4  have integer solutions?
x2+y3=z4haveintegersolutions?
Answered by prakash jain last updated on 02/Jan/15
Assuming we are looking for +ve  solutions  y^3 =(z^2 −x)(z^2 +x)  To find a solution we need to  factorize y^3  =b×a(b≥a)such that  a+((b−a)/2) is a perfect square or ((b+a)/2)  is perfect square.  Then z=(√((b+a)/2))  x=((b−a)/2)  y=((b×a))^(1/3)    Trying with multiple value of y, y=8  gives one solution  y^3 =8^3 =8×64, a=8, b=64  z=(√((a+b)/2))=6  x=((64−8)/2)=28  x=28,y=8,z=6  Also if x,y,z is a solution then n^6 x,n^4 y,n^3 z also is a solution.  Othe solution with higher values of y.  x=27,y=18,z=9              y^3 =54×108
Assumingwearelookingfor+vesolutionsy3=(z2x)(z2+x)Tofindasolutionweneedtofactorizey3=b×a(ba)suchthata+ba2isaperfectsquareorb+a2isperfectsquare.Thenz=b+a2x=ba2y=b×a3Tryingwithmultiplevalueofy,y=8givesonesolutiony3=83=8×64,a=8,b=64z=a+b2=6x=6482=28x=28,y=8,z=6Alsoifx,y,zisasolutionthenn6x,n4y,n3zalsoisasolution.Othesolutionwithhighervaluesofy.x=27,y=18,z=9y3=54×108