Menu Close

x-2-y-x-2-xy-y-2-yy-sin-x-0-y-1-y-2-separation-of-variables-




Question Number 5097 by LMTV last updated on 12/Apr/16
x^2 y′=x^2 +xy+y^2   yy′+sin x=0  y′=1−y^2   separation of variables
x2y=x2+xy+y2yy+sinx=0y=1y2separationofvariables
Answered by Yozzii last updated on 12/Apr/16
y^′ =((x(x+y))/(x^2 −1))  y^′ −(x/(x^2 −1))y=(x^2 /(x^2 −1))  y^′ +P(x)y=Q(x)  I(x)=e^(−∫(x/(x^2 −1))dx) =e^(−(1/2)∫((2x)/(x^2 −1))dx) =e^(−0.5ln(x^2 −1))   I(x)=(1/( (√(x^2 −1))))  Using yI(x)=∫I(x)Q(x)dx  yI(x)=∫(x^2 /((x^2 −1)^(3/2) ))dx  x=coshu⇒dx=sinhudu  x^2 −1=cosh^2 u−1=sinh^2 u.  yI(x)=∫((cosh^2 usinhu)/(sinh^3 u))du  yI(x)=∫((cosh^2 u)/(sinh^2 u))du=∫(cosech^2 u+1)du  D(cothu)=((sinhusinhu−coshucoshu)/(sinh^2 u))  D(cothu)=((−(cosh^2 u−sinh^2 u))/(sinh^2 u))  D(cothu)=−cosech^2 u  ⇒cothu=−∫cosech^2 udu  yI(x)=−cothu+u+C  u=cosh^(−1) x  ⇒y=(C+cosh^(−1) x−coth(cosh^(−1) x))(√(x^2 −1))  y=(C+ln(x+(√(x^2 −1)))−((cosh(cosh^(−1) x))/(sinh(cosh^(−1) x))))(√(x^2 −1))  sinh(cosh^(−1) x)=((e^(ln(x+(√(x^2 −1)))) −e^(ln(1/(x+(√(x^2 −1))))) )/2)  sinh(cosh^(−1) x)=(((x+(√(x^2 −1)))^2 −1)/(2(x+(√(x^2 −1)))))  cosh(cosh^(−1) x)=(((x+(√(x^2 −1)))^2 +1)/(2(x+(√(x^2 −1)))))  ⇒coth(cosh^(−1) x)=(((x+(√(x^2 −1)))^2 +1)/((x+(√(x^2 −1)))^2 −1))  coth(cosh^(−1) x)=((x^2 +2x(√(x^2 −1))+x^2 −1+1)/(x^2 +2x(√(x^2 −1))+x^2 −1−1))  coth(cosh^(−1) x)=((x(x+(√(x^2 −1))))/(x^2 +x(√(x^2 −1))−1))  =(x/(x−(((x−(√(x^2 −1))))/(x^2 −x^2 +1))))  =(x/(x−x+(√(x^2 −1))))  coth(cosh^(−1) x)=(x/( (√(x^2 −1))))  ∴ y=(C+ln(x+(√(x^2 −1))))−x
y=x(x+y)x21yxx21y=x2x21y+P(x)y=Q(x)I(x)=exx21dx=e122xx21dx=e0.5ln(x21)I(x)=1x21UsingyI(x)=I(x)Q(x)dxyI(x)=x2(x21)3/2dxx=coshudx=sinhudux21=cosh2u1=sinh2u.yI(x)=cosh2usinhusinh3uduyI(x)=cosh2usinh2udu=(cosech2u+1)duD(cothu)=sinhusinhucoshucoshusinh2uD(cothu)=(cosh2usinh2u)sinh2uD(cothu)=cosech2ucothu=cosech2uduyI(x)=cothu+u+Cu=cosh1xy=(C+cosh1xcoth(cosh1x))x21y=(C+ln(x+x21)cosh(cosh1x)sinh(cosh1x))x21sinh(cosh1x)=eln(x+x21)eln1x+x212sinh(cosh1x)=(x+x21)212(x+x21)cosh(cosh1x)=(x+x21)2+12(x+x21)coth(cosh1x)=(x+x21)2+1(x+x21)21coth(cosh1x)=x2+2xx21+x21+1x2+2xx21+x211coth(cosh1x)=x(x+x21)x2+xx211=xx(xx21)x2x2+1=xxx+x21coth(cosh1x)=xx21y=(C+ln(x+x21))x
Commented by LMTV last updated on 12/Apr/16
sorry ToT change question... my miss...
sorryToTchangequestionmymiss
Commented by Yozzii last updated on 12/Apr/16
Answer based on question posted before  correction: x^2 y^′ =x^2 +xy+y^′ .
Answerbasedonquestionpostedbeforecorrection:x2y=x2+xy+y.
Commented by Yozzii last updated on 12/Apr/16
Pas de proble^� me.
Pasdeprobleme`.
Answered by Yozzii last updated on 12/Apr/16
(dy/dx)=1−y^2 ⇒∫(dy/(1−y^2 ))=∫dx  (1/2)∫(1/(1−y))+(1/(1+y))dy=x+C  (1/2)(ln∣y+1∣−ln∣1−y∣)=x+C  ((y+1)/(1−y))=e^(2x+2C) =Ae^(2x)   y+1=Ae^(2x) −yAe^(2x)   y(1+Ae^(2x) )=Ae^(2x) −1  y=((Ae^(2x) −1)/(Ae^(2x) +1))
dydx=1y2dy1y2=dx1211y+11+ydy=x+C12(lny+1ln1y)=x+Cy+11y=e2x+2C=Ae2xy+1=Ae2xyAe2xy(1+Ae2x)=Ae2x1y=Ae2x1Ae2x+1
Answered by Yozzii last updated on 12/Apr/16
y′=1+((y/x))+((y/x))^2     (x≠0)  Let y=ux⇒y^′ =u+u^′ x    {u=f(x)}  ∴ u+u^′ x=1+u+u^2   u^′ x=1+u^2   ⇒∫(1/(1+u^2 ))du=∫(1/x)dx  tan^(−1) u=ln∣x∣+C  ⇒u=tan(C+ln∣x∣)  Since u=(y/x)⇒y=xtan(C+ln∣x∣)  where C is constant.
y=1+(yx)+(yx)2(x0)Lety=uxy=u+ux{u=f(x)}u+ux=1+u+u2ux=1+u211+u2du=1xdxtan1u=lnx+Cu=tan(C+lnx)Sinceu=yxy=xtan(C+lnx)whereCisconstant.
Answered by Yozzii last updated on 12/Apr/16
yy^′ =−sinx⇒∫ydy=−∫sinxdx  0.5y^2 =−(−cosx)+C  y^2 =2cosx+D  y=±(√(D+2cosx)).
yy=sinxydy=sinxdx0.5y2=(cosx)+Cy2=2cosx+Dy=±D+2cosx.

Leave a Reply

Your email address will not be published. Required fields are marked *