Question Number 5097 by LMTV last updated on 12/Apr/16
$${x}^{\mathrm{2}} {y}'={x}^{\mathrm{2}} +{xy}+{y}^{\mathrm{2}} \\ $$$${yy}'+\mathrm{sin}\:{x}=\mathrm{0} \\ $$$${y}'=\mathrm{1}−{y}^{\mathrm{2}} \\ $$$$\mathrm{separation}\:\mathrm{of}\:\mathrm{variables} \\ $$
Answered by Yozzii last updated on 12/Apr/16
$${y}^{'} =\frac{{x}\left({x}+{y}\right)}{{x}^{\mathrm{2}} −\mathrm{1}} \\ $$$${y}^{'} −\frac{{x}}{{x}^{\mathrm{2}} −\mathrm{1}}{y}=\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} −\mathrm{1}} \\ $$$${y}^{'} +{P}\left({x}\right){y}={Q}\left({x}\right) \\ $$$${I}\left({x}\right)={e}^{−\int\frac{{x}}{{x}^{\mathrm{2}} −\mathrm{1}}{dx}} ={e}^{−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} −\mathrm{1}}{dx}} ={e}^{−\mathrm{0}.\mathrm{5}{ln}\left({x}^{\mathrm{2}} −\mathrm{1}\right)} \\ $$$${I}\left({x}\right)=\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}} \\ $$$${Using}\:{yI}\left({x}\right)=\int{I}\left({x}\right){Q}\left({x}\right){dx} \\ $$$${yI}\left({x}\right)=\int\frac{{x}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}/\mathrm{2}} }{dx} \\ $$$${x}={coshu}\Rightarrow{dx}={sinhudu} \\ $$$${x}^{\mathrm{2}} −\mathrm{1}={cosh}^{\mathrm{2}} {u}−\mathrm{1}={sinh}^{\mathrm{2}} {u}. \\ $$$${yI}\left({x}\right)=\int\frac{{cosh}^{\mathrm{2}} {usinhu}}{{sinh}^{\mathrm{3}} {u}}{du} \\ $$$${yI}\left({x}\right)=\int\frac{{cosh}^{\mathrm{2}} {u}}{{sinh}^{\mathrm{2}} {u}}{du}=\int\left({cosech}^{\mathrm{2}} {u}+\mathrm{1}\right){du} \\ $$$${D}\left({cothu}\right)=\frac{{sinhusinhu}−{coshucoshu}}{{sinh}^{\mathrm{2}} {u}} \\ $$$${D}\left({cothu}\right)=\frac{−\left({cosh}^{\mathrm{2}} {u}−{sinh}^{\mathrm{2}} {u}\right)}{{sinh}^{\mathrm{2}} {u}} \\ $$$${D}\left({cothu}\right)=−{cosech}^{\mathrm{2}} {u} \\ $$$$\Rightarrow{cothu}=−\int{cosech}^{\mathrm{2}} {udu} \\ $$$${yI}\left({x}\right)=−{cothu}+{u}+{C} \\ $$$${u}={cosh}^{−\mathrm{1}} {x} \\ $$$$\Rightarrow{y}=\left({C}+{cosh}^{−\mathrm{1}} {x}−{coth}\left({cosh}^{−\mathrm{1}} {x}\right)\right)\sqrt{{x}^{\mathrm{2}} −\mathrm{1}} \\ $$$${y}=\left({C}+{ln}\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)−\frac{{cosh}\left({cosh}^{−\mathrm{1}} {x}\right)}{{sinh}\left({cosh}^{−\mathrm{1}} {x}\right)}\right)\sqrt{{x}^{\mathrm{2}} −\mathrm{1}} \\ $$$${sinh}\left({cosh}^{−\mathrm{1}} {x}\right)=\frac{{e}^{{ln}\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)} −{e}^{{ln}\frac{\mathrm{1}}{{x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}} }{\mathrm{2}} \\ $$$${sinh}\left({cosh}^{−\mathrm{1}} {x}\right)=\frac{\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)} \\ $$$${cosh}\left({cosh}^{−\mathrm{1}} {x}\right)=\frac{\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)} \\ $$$$\Rightarrow{coth}\left({cosh}^{−\mathrm{1}} {x}\right)=\frac{\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)^{\mathrm{2}} +\mathrm{1}}{\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)^{\mathrm{2}} −\mathrm{1}} \\ $$$${coth}\left({cosh}^{−\mathrm{1}} {x}\right)=\frac{{x}^{\mathrm{2}} +\mathrm{2}{x}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}+{x}^{\mathrm{2}} −\mathrm{1}+\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{2}{x}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}+{x}^{\mathrm{2}} −\mathrm{1}−\mathrm{1}} \\ $$$${coth}\left({cosh}^{−\mathrm{1}} {x}\right)=\frac{{x}\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)}{{x}^{\mathrm{2}} +{x}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}−\mathrm{1}} \\ $$$$=\frac{{x}}{{x}−\frac{\left({x}−\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)}{{x}^{\mathrm{2}} −{x}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$=\frac{{x}}{{x}−{x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}} \\ $$$${coth}\left({cosh}^{−\mathrm{1}} {x}\right)=\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}} \\ $$$$\therefore\:{y}=\left({C}+{ln}\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)\right)−{x} \\ $$$$ \\ $$$$ \\ $$
Commented by LMTV last updated on 12/Apr/16
$$\mathrm{sorry}\:\mathrm{ToT}\:\mathrm{change}\:\mathrm{question}…\:\mathrm{my}\:\mathrm{miss}… \\ $$
Commented by Yozzii last updated on 12/Apr/16
$${Answer}\:{based}\:{on}\:{question}\:{posted}\:{before} \\ $$$${correction}:\:{x}^{\mathrm{2}} {y}^{'} ={x}^{\mathrm{2}} +{xy}+{y}^{'} . \\ $$
Commented by Yozzii last updated on 12/Apr/16