Menu Close

x-2x-1-5-1-1-25-solve-for-x-




Question Number 143324 by Rankut last updated on 13/Jun/21
(x^(2x^(−(1/5)) ) )^(−1) =(1/(25))  solve for  x
$$\left(\boldsymbol{{x}}^{\mathrm{2}\boldsymbol{{x}}^{−\frac{\mathrm{1}}{\mathrm{5}}} } \right)^{−\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{25}} \\ $$$$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\:\:\boldsymbol{\mathrm{x}} \\ $$
Answered by gsk2684 last updated on 13/Jun/21
x^(2x^(−(1/5)) ) =25⇒2x^(−(1/5)) ln x=ln 25  2x^(−(1/5)) ln x=2ln 5  satisfied by 5^5
$$\mathrm{x}^{\mathrm{2x}^{−\frac{\mathrm{1}}{\mathrm{5}}} } =\mathrm{25}\Rightarrow\mathrm{2x}^{−\frac{\mathrm{1}}{\mathrm{5}}} \mathrm{ln}\:\mathrm{x}=\mathrm{ln}\:\mathrm{25} \\ $$$$\mathrm{2x}^{−\frac{\mathrm{1}}{\mathrm{5}}} \mathrm{ln}\:\mathrm{x}=\mathrm{2ln}\:\mathrm{5} \\ $$$$\mathrm{satisfied}\:\mathrm{by}\:\mathrm{5}^{\mathrm{5}} \\ $$
Answered by mr W last updated on 13/Jun/21
x^(2x^(−(1/5)) ) =25  (x^(−(1/5)) )^x^(−(1/5))  =25^(−(1/(10))) =5^(−(1/5))   let u=x^(−(1/5))   u^u =5^(−(1/5))   e^(ln u) ln u=−((ln 5)/5)  ln u=W(−((ln 5)/5))  −(1/5)ln x=W(−((ln 5)/5))  ⇒x=e^(−5W(−((ln 5)/5)))          ≈ { ((e^(−5×(−1.609437912)) =3125=5^5 )),((e^(−5×(−0.568064483)) =17.124878)) :}
$${x}^{\mathrm{2}{x}^{−\frac{\mathrm{1}}{\mathrm{5}}} } =\mathrm{25} \\ $$$$\left({x}^{−\frac{\mathrm{1}}{\mathrm{5}}} \right)^{{x}^{−\frac{\mathrm{1}}{\mathrm{5}}} } =\mathrm{25}^{−\frac{\mathrm{1}}{\mathrm{10}}} =\mathrm{5}^{−\frac{\mathrm{1}}{\mathrm{5}}} \\ $$$${let}\:{u}={x}^{−\frac{\mathrm{1}}{\mathrm{5}}} \\ $$$${u}^{{u}} =\mathrm{5}^{−\frac{\mathrm{1}}{\mathrm{5}}} \\ $$$${e}^{\mathrm{ln}\:{u}} \mathrm{ln}\:{u}=−\frac{\mathrm{ln}\:\mathrm{5}}{\mathrm{5}} \\ $$$$\mathrm{ln}\:{u}={W}\left(−\frac{\mathrm{ln}\:\mathrm{5}}{\mathrm{5}}\right) \\ $$$$−\frac{\mathrm{1}}{\mathrm{5}}\mathrm{ln}\:{x}={W}\left(−\frac{\mathrm{ln}\:\mathrm{5}}{\mathrm{5}}\right) \\ $$$$\Rightarrow{x}={e}^{−\mathrm{5}{W}\left(−\frac{\mathrm{ln}\:\mathrm{5}}{\mathrm{5}}\right)} \\ $$$$\:\:\:\:\:\:\:\approx\begin{cases}{{e}^{−\mathrm{5}×\left(−\mathrm{1}.\mathrm{609437912}\right)} =\mathrm{3125}=\mathrm{5}^{\mathrm{5}} }\\{{e}^{−\mathrm{5}×\left(−\mathrm{0}.\mathrm{568064483}\right)} =\mathrm{17}.\mathrm{124878}}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *