Menu Close

x-2x-3-interval-x-A-3-x-3-B-x-0-C-x-0-D-1-x-1-E-x-2-




Question Number 10973 by ridwan balatif last updated on 05/Mar/17
∣∣x∣+2x∣≤3, interval x=...?  A.−3≤x≤3  B. x≥0  C. x≤0  D. −1≤x≤1  E. x≤2
$$\mid\mid{x}\mid+\mathrm{2x}\mid\leqslant\mathrm{3},\:\mathrm{interval}\:\mathrm{x}=…? \\ $$$$\mathrm{A}.−\mathrm{3}\leqslant{x}\leqslant\mathrm{3} \\ $$$$\mathrm{B}.\:{x}\geqslant\mathrm{0} \\ $$$$\mathrm{C}.\:{x}\leqslant\mathrm{0} \\ $$$$\mathrm{D}.\:−\mathrm{1}\leqslant{x}\leqslant\mathrm{1} \\ $$$$\mathrm{E}.\:{x}\leqslant\mathrm{2} \\ $$
Commented by ajfour last updated on 05/Mar/17
    D.   When x≥0 , ∣∣x∣+2x∣=∣3x∣ =3x  while when x≤0, the same is ∣−x+2x∣  = ∣x∣ =−x .  so the entire range is  −3≤ x≤ 1 .  ..as can be viewed in the graph below.
$$ \\ $$$$ \\ $$$${D}.\: \\ $$$${When}\:{x}\geqslant\mathrm{0}\:,\:\mid\mid{x}\mid+\mathrm{2}{x}\mid=\mid\mathrm{3}{x}\mid\:=\mathrm{3}{x} \\ $$$${while}\:{when}\:{x}\leqslant\mathrm{0},\:{the}\:{same}\:{is}\:\mid−{x}+\mathrm{2}{x}\mid \\ $$$$=\:\mid{x}\mid\:=−{x}\:. \\ $$$${so}\:{the}\:{entire}\:{range}\:{is}\:\:−\mathrm{3}\leqslant\:{x}\leqslant\:\mathrm{1}\:. \\ $$$$..{as}\:{can}\:{be}\:{viewed}\:{in}\:{the}\:{graph}\:{below}. \\ $$$$ \\ $$$$ \\ $$
Answered by ajfour last updated on 05/Mar/17
Commented by ridwan balatif last updated on 05/Mar/17
thank you sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by sandy_suhendra last updated on 05/Mar/17
if x≥0 ⇒ ∣x+2x∣≤3                       ∣3x∣≤3                       ∣x∣≤1 ⇒ − 1≤x≤1  so 0≤x≤1 ... (1)    if x<0 ⇒ ∣x−2x∣≤3                       ∣−x∣≤3 ⇒ −3≤x≤3  so −3≤x<0 ... (2)  from (1)∪(2)={−3≤x≤1}  we can choose D
$$\mathrm{if}\:\mathrm{x}\geqslant\mathrm{0}\:\Rightarrow\:\mid\mathrm{x}+\mathrm{2x}\mid\leqslant\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\mathrm{3x}\mid\leqslant\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\mathrm{x}\mid\leqslant\mathrm{1}\:\Rightarrow\:−\:\mathrm{1}\leqslant\mathrm{x}\leqslant\mathrm{1} \\ $$$$\mathrm{so}\:\mathrm{0}\leqslant\mathrm{x}\leqslant\mathrm{1}\:…\:\left(\mathrm{1}\right) \\ $$$$ \\ $$$$\mathrm{if}\:\mathrm{x}<\mathrm{0}\:\Rightarrow\:\mid\mathrm{x}−\mathrm{2x}\mid\leqslant\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid−\mathrm{x}\mid\leqslant\mathrm{3}\:\Rightarrow\:−\mathrm{3}\leqslant\mathrm{x}\leqslant\mathrm{3} \\ $$$$\mathrm{so}\:−\mathrm{3}\leqslant\mathrm{x}<\mathrm{0}\:…\:\left(\mathrm{2}\right) \\ $$$$\mathrm{from}\:\left(\mathrm{1}\right)\cup\left(\mathrm{2}\right)=\left\{−\mathrm{3}\leqslant\mathrm{x}\leqslant\mathrm{1}\right\} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{choose}\:\mathrm{D} \\ $$
Commented by ridwan balatif last updated on 05/Mar/17
thank you sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by Mechas88 last updated on 06/Mar/17
    −3≤∣x∣+2x≤3  −3≤3x≤3  −1≤x≤1    x≤1  x≥−1    Rta  D
$$ \\ $$$$ \\ $$$$−\mathrm{3}\leqslant\mid{x}\mid+\mathrm{2}{x}\leqslant\mathrm{3} \\ $$$$−\mathrm{3}\leqslant\mathrm{3}{x}\leqslant\mathrm{3} \\ $$$$−\mathrm{1}\leqslant{x}\leqslant\mathrm{1} \\ $$$$ \\ $$$${x}\leqslant\mathrm{1} \\ $$$${x}\geqslant−\mathrm{1} \\ $$$$ \\ $$$${Rta}\:\:{D} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *