Menu Close

x-3-1-2-2x-1-1-3-




Question Number 140669 by john_santu last updated on 11/May/21
 x^3 +1 = 2 ((2x−1))^(1/(3 ))
$$\:{x}^{\mathrm{3}} +\mathrm{1}\:=\:\mathrm{2}\:\sqrt[{\mathrm{3}\:}]{\mathrm{2}{x}−\mathrm{1}} \\ $$
Answered by bemath last updated on 11/May/21
 ((x^3 +1)/2) = ((2x−1))^(1/(3 ))    set g(x)= ((2x−1))^(1/(3 ))  ⇒((x^3 +1)/2) = g^(−1) (x)  ⇒g(g^(−1) (x))= x   ⇒((x^3 +1)/2) = x ; x^3 −2x+1 = 0  ⇒(x−1)(x^2 +x−1)=0  ⇒ x = 1 ∧ ((−1 ± (√5))/2)
$$\:\frac{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}{\mathrm{2}}\:=\:\sqrt[{\mathrm{3}\:}]{\mathrm{2x}−\mathrm{1}} \\ $$$$\:\mathrm{set}\:\mathrm{g}\left(\mathrm{x}\right)=\:\sqrt[{\mathrm{3}\:}]{\mathrm{2x}−\mathrm{1}}\:\Rightarrow\frac{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}{\mathrm{2}}\:=\:\mathrm{g}^{−\mathrm{1}} \left(\mathrm{x}\right) \\ $$$$\Rightarrow\mathrm{g}\left(\mathrm{g}^{−\mathrm{1}} \left(\mathrm{x}\right)\right)=\:\mathrm{x}\: \\ $$$$\Rightarrow\frac{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}{\mathrm{2}}\:=\:\mathrm{x}\:;\:\mathrm{x}^{\mathrm{3}} −\mathrm{2x}+\mathrm{1}\:=\:\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{x}\:=\:\mathrm{1}\:\wedge\:\frac{−\mathrm{1}\:\pm\:\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *