x-3-ax-2-bx-c-0-Let-x-pt-q-t-1-p-3-t-3-3p-2-qt-2-3pq-2-t-q-3-a-t-1-p-2-t-2-2pqt-q-2-b-pt-q-t-2-2t-1-c-t-3-3t-2-3t-1-0-p-3-ap-2-bp-c-t-3-3p-2-q-ap-2-2apq-bq-2 Tinku Tara June 3, 2023 Algebra 0 Comments FacebookTweetPin Question Number 74339 by ajfour last updated on 22/Nov/19 x3+ax2+bx+c=0Letx=pt+qt+1p3t3+3p2qt2+3pq2t+q3+a(t+1)(p2t2+2pqt+q2)+b(pt+q)(t2+2t+1)+c(t3+3t2+3t+1)=0⇒(p3+ap2+bp+c)t3+(3p2q+ap2+2apq+bq+2bp+3c)t2+(3q2p+aq2+2apq+bp+2bq+3c)t+(q3+aq2+bq+c)=0Letcoeffs.oft2andtbezero.Subtractingandaddingthem3pq+a(p+q)+b=0&3pq(p+q)+a{(p+q)2−2pq}+4apq+3b(p+q)+6c=0letscallpq=m,p+q=s⇒3m+as+b=0….(i)3ms+a(s2−2m)+4am+3bs+6c=0⇒am+bs+3c=0….(ii)⇒s=9c−aba2−3b;m=b2−3aca2−3bNowp,qarerootsofeq.z2−sz+m=0p,q=s2±s24−mt3=−(q3+aq2+bq+cp3+ap2+bq+c)(t≠−1)x=pt+qt+1. Commented by ajfour last updated on 23/Nov/19 consideringx3−6x2+3x+10=0a=−6,b=3,c=10s=90+1827=4,m=9+18027=7p,q=2±i3;letp=2−i3lett3=−(8+12i3−18−33i−6(1+4i3)+3(2+i3)+108−12i3−18+33i−6(1−4i3)+3(2−i3)+10)⇒t3=−(−123i123i)⇒t=1,ω,ω2x1=42=2x2=(2−i3)(−1+i3)/2+(2+i3)(1+i3)/2=(1+33i)+(4+23i)1+i3=5x3=(2−i3)(−1−i3)/2+(2+i3)(1−i3)/2=−1+i31−i3=−1hencerootsarex∈{2,5,−1}(trueindeed!) Commented by ajfour last updated on 23/Nov/19 consideringx3−6x2+3x+10=0againandusingCardano′smethodletx=t+2⇒t3+12t+8−24t−24+3t+6+10=0⇒t3−9t=0⇒t=±3,0⇒x=−1,2,5(easyenough,nquitedisheartning!) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: xy-24-x-3-y-xy-6-y-3-x-Next Next post: e-2t-sin-e-t-dt- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.