Menu Close

x-3-ax-2-bx-c-0-Let-x-pt-q-t-1-p-3-t-3-3p-2-qt-2-3pq-2-t-q-3-a-t-1-p-2-t-2-2pqt-q-2-b-pt-q-t-2-2t-1-c-t-3-3t-2-3t-1-0-p-3-ap-2-bp-c-t-3-3p-2-q-ap-2-2apq-bq-2




Question Number 74339 by ajfour last updated on 22/Nov/19
x^3 +ax^2 +bx+c=0  Let   x=((pt+q)/(t+1))  p^3 t^3 +3p^2 qt^2 +3pq^2 t+q^3   +a(t+1)(p^2 t^2 +2pqt+q^2 )  +b(pt+q)(t^2 +2t+1)  +c(t^3 +3t^2 +3t+1)    =  0  ⇒    (p^3 +ap^2 +bp+c)t^3   +(3p^2 q+ap^2 +2apq+bq+2bp+3c)t^2   +(3q^2 p+aq^2 +2apq+bp+2bq+3c)t  +(q^3 +aq^2 +bq+c) = 0  Let coeffs. of t^2  and t be zero.  Subtracting and adding them   3pq+a(p+q)+b=0   &  3pq(p+q)+a{(p+q)^2 −2pq}   +4apq+3b(p+q)+6c = 0  lets call  pq=m ,  p+q=s  ⇒    3m+as+b=0    ....(i)  3ms+a(s^2 −2m)+4am+3bs+6c=0  ⇒ am+bs+3c=0    ....(ii)  ⇒  s=((9c−ab)/(a^2 −3b))   ;  m=((b^2 −3ac)/(a^2 −3b))   Now  p,q  are roots of eq.     z^2 −sz+m=0     p,q = (s/2)±(√((s^2 /4)−m))    t^3 =−(((q^3 +aq^2 +bq+c)/(p^3 +ap^2 +bq+c)))     (t≠−1)     x=((pt+q)/(t+1)) .
x3+ax2+bx+c=0Letx=pt+qt+1p3t3+3p2qt2+3pq2t+q3+a(t+1)(p2t2+2pqt+q2)+b(pt+q)(t2+2t+1)+c(t3+3t2+3t+1)=0(p3+ap2+bp+c)t3+(3p2q+ap2+2apq+bq+2bp+3c)t2+(3q2p+aq2+2apq+bp+2bq+3c)t+(q3+aq2+bq+c)=0Letcoeffs.oft2andtbezero.Subtractingandaddingthem3pq+a(p+q)+b=0&3pq(p+q)+a{(p+q)22pq}+4apq+3b(p+q)+6c=0letscallpq=m,p+q=s3m+as+b=0.(i)3ms+a(s22m)+4am+3bs+6c=0am+bs+3c=0.(ii)s=9caba23b;m=b23aca23bNowp,qarerootsofeq.z2sz+m=0p,q=s2±s24mt3=(q3+aq2+bq+cp3+ap2+bq+c)(t1)x=pt+qt+1.
Commented by ajfour last updated on 23/Nov/19
considering   x^3 −6x^2 +3x+10=0  a=−6, b=3, c=10  s=((90+18)/(27))=4  , m=((9+180)/(27))=7  p,q=2±i(√3)   ;  let p=2−i(√3)  let  t^3 =−(((8+12i(√3)−18−3(√3)i−6(1+4i(√3))+3(2+i(√3))+10)/(8−12i(√3)−18+3(√3)i−6(1−4i(√3))+3(2−i(√3))+10)))  ⇒ t^3 = −(((−12(√3)i)/(12(√3)i)))    ⇒  t=1,ω,ω^2   x_1 =(4/2) = 2      x_2 =(((2−i(√3))(−1+i(√3))/2+(2+i(√3)))/((1+i(√3))/2))      = (((1+3(√3)i)+(4+2(√3)i))/(1+i(√3))) = 5   x_3 =(((2−i(√3))(−1−i(√3))/2+(2+i(√3)))/((1−i(√3))/2))        =((−1+i(√3))/(    1−i(√3))) = −1   hence  roots are   x∈{2,5,−1}  (true indeed!)
consideringx36x2+3x+10=0a=6,b=3,c=10s=90+1827=4,m=9+18027=7p,q=2±i3;letp=2i3lett3=(8+12i31833i6(1+4i3)+3(2+i3)+10812i318+33i6(14i3)+3(2i3)+10)t3=(123i123i)t=1,ω,ω2x1=42=2x2=(2i3)(1+i3)/2+(2+i3)(1+i3)/2=(1+33i)+(4+23i)1+i3=5x3=(2i3)(1i3)/2+(2+i3)(1i3)/2=1+i31i3=1hencerootsarex{2,5,1}(trueindeed!)
Commented by ajfour last updated on 23/Nov/19
considering   x^3 −6x^2 +3x+10=0  again and using Cardano′s method    let  x=t+2   ⇒    t^3 +12t+8−24t−24+3t+6+10=0  ⇒  t^3 −9t = 0  ⇒  t=±3, 0  ⇒  x= −1, 2, 5    (easy enough,        n quite disheartning!)
consideringx36x2+3x+10=0againandusingCardanosmethodletx=t+2t3+12t+824t24+3t+6+10=0t39t=0t=±3,0x=1,2,5(easyenough,nquitedisheartning!)

Leave a Reply

Your email address will not be published. Required fields are marked *