Menu Close

x-3-x-3-1-10-dx-




Question Number 136067 by bramlexs22 last updated on 18/Mar/21
Λ = ∫ x^3  (x^3 +1)^(10)  dx
Λ=x3(x3+1)10dx
Answered by Olaf last updated on 18/Mar/21
Λ = ∫x^3 (x^3 +1)^(10) dx  Λ = ∫x^3 Σ_(k=0) ^(10) C_k ^(10) x^(3k) dx  Λ = ∫Σ_(k=0) ^(10) C_k ^(10) x^(3k+3) dx  Λ = Σ_(k=0) ^(10) (C_k ^(10) /(3k+4))x^(3k+4) +C  Λ = (1/(34))x^(34) +((10)/(31))x^(31) +((45)/(28))x^(28) +((24)/5)x^(25) +((105)/(11))x^(22)   +((252)/(19))x^(19) +((105)/8)x^(16) +((120)/(13))x^(13) +(9/2)x^(10) +((10)/7)x^7   +(1/4)x^4 +C
Λ=x3(x3+1)10dxΛ=x310k=0Ck10x3kdxΛ=10k=0Ck10x3k+3dxΛ=10k=0Ck103k+4x3k+4+CΛ=134x34+1031x31+4528x28+245x25+10511x22+25219x19+1058x16+12013x13+92x10+107x7+14x4+C
Commented by bramlexs22 last updated on 19/Mar/21
yes....thanks
yes.thanks
Answered by Ñï= last updated on 18/Mar/21
Λ=∫x^3 (x^3 +1)^(10) dx  =(1/(33))∫xd[(x^3 +1)^(11) ]  =(1/(33)){(x^3 +1)^(11) x−∫(x^3 +1)^(11) dx}  =(1/(33))(x^3 +1)^(11) x−(1/(33))Σ_(n=0) ^(11)  (((11)),(n) )∫x^3 dx  =(1/(33))(x^3 +1)^(11) x−(1/(132))Σ_(n=0) ^(11)  (((11)),(n) )x^4 +C
Λ=x3(x3+1)10dx=133xd[(x3+1)11]=133{(x3+1)11x(x3+1)11dx}=133(x3+1)11x13311n=0(11n)x3dx=133(x3+1)11x113211n=0(11n)x4+C

Leave a Reply

Your email address will not be published. Required fields are marked *