Menu Close

x-3-x-c-0-0-lt-c-lt-2-3-3-Find-x-




Question Number 138391 by ajfour last updated on 13/Apr/21
x^3 −x−c=0  ; 0<c<(2/(3(√3)))  Find x.
x3xc=0;0<c<233Findx.
Answered by ajfour last updated on 13/Apr/21
let   t^2 +pt+q=0  (x^3 −t^3 )−pt^2 −(x+qt)−c=0  let  x−t=z  (x−t){(x−t)^2 +3tx}−pt^2 −(x−t)  +(q+1)t−c=0  z(z^2 +3tz+3t^2 )−z−{pt^2 −(q+1)t+c}=0  z^3 +3tz^2 +(3t^2 −1)z=pt^2 −(q+1)t+c  let  q=−1  pt^2 =−c  &  t^2 +pt−1=0  −(c/p)+pt−1=0  t=((p+c)/p^2 )  p(((p+c)/p^2 ))^2 =−c      [p<0]  cp^3 +p^2 +2cp+c^2 =0  p^3 +(p^2 /c)+2p+c=0  let  p=s−(1/(3c))  s^3 −(s^2 /c)+(s/(3c^2 ))−(1/(27c^3 ))  +(1/c)(s^2 −((2s)/(3c))+(1/(9c^2 )))+2s−(2/(3c))+c=0  ⇒  s^3 +(2−(1/(3c^2 )))s+(2/(27c^3 ))−(2/(3c))+c=0  D=((1/(27c^3 ))−(1/(3c))+(c/2))^2 −((1/(9c^2 ))−(2/3))^3     =(1/(9c^2 ))+(c^2 /4)−(2/(81c^4 ))−(1/3)+(1/(27c^2 ))    +(8/(27))+(2/(81c^4 ))−(4/(27c^2 ))  D=(c^2 /4)−(1/(27))  (same old tragedy..)
lett2+pt+q=0(x3t3)pt2(x+qt)c=0letxt=z(xt){(xt)2+3tx}pt2(xt)+(q+1)tc=0z(z2+3tz+3t2)z{pt2(q+1)t+c}=0z3+3tz2+(3t21)z=pt2(q+1)t+cletq=1pt2=c&t2+pt1=0cp+pt1=0t=p+cp2p(p+cp2)2=c[p<0]cp3+p2+2cp+c2=0p3+p2c+2p+c=0letp=s13cs3s2c+s3c2127c3+1c(s22s3c+19c2)+2s23c+c=0s3+(213c2)s+227c323c+c=0D=(127c313c+c2)2(19c223)3=19c2+c24281c413+127c2+827+281c4427c2D=c24127(sameoldtragedy..)

Leave a Reply

Your email address will not be published. Required fields are marked *