Menu Close

x-4-x-x-1-3-dx-




Question Number 78251 by aliesam last updated on 15/Jan/20
∫((x+4)/(x−(x)^(1/3) )) dx
$$\int\frac{{x}+\mathrm{4}}{{x}−\sqrt[{\mathrm{3}}]{{x}}}\:{dx}\: \\ $$
Answered by john santu last updated on 15/Jan/20
let x = u^3  ⇒dx=3u^2  du  ∫ ((u^3 +4)/(u^3 −u))×3u^2  du=  ∫ ((3u^4 +12u)/(u^2 −1)) du=∫ 3u^2 +3 du +  ∫ ((12u+4)/(u^2 −1)) du = u^3 +3u +∫(4/(u−1))+(8/(u+1)) du  = u^3 +3u+4ln(u−1)+8ln(u+1)+c  = x+3 (x)^(1/(3 ))  +4ln((x)^(1/(3 )) −1)+8ln((x)^(1/(3 )) +1)+c
$${let}\:{x}\:=\:{u}^{\mathrm{3}} \:\Rightarrow{dx}=\mathrm{3}{u}^{\mathrm{2}} \:{du} \\ $$$$\int\:\frac{{u}^{\mathrm{3}} +\mathrm{4}}{{u}^{\mathrm{3}} −{u}}×\mathrm{3}{u}^{\mathrm{2}} \:{du}= \\ $$$$\int\:\frac{\mathrm{3}{u}^{\mathrm{4}} +\mathrm{12}{u}}{{u}^{\mathrm{2}} −\mathrm{1}}\:{du}=\int\:\mathrm{3}{u}^{\mathrm{2}} +\mathrm{3}\:{du}\:+ \\ $$$$\int\:\frac{\mathrm{12}{u}+\mathrm{4}}{{u}^{\mathrm{2}} −\mathrm{1}}\:{du}\:=\:{u}^{\mathrm{3}} +\mathrm{3}{u}\:+\int\frac{\mathrm{4}}{{u}−\mathrm{1}}+\frac{\mathrm{8}}{{u}+\mathrm{1}}\:{du} \\ $$$$=\:{u}^{\mathrm{3}} +\mathrm{3}{u}+\mathrm{4}{ln}\left({u}−\mathrm{1}\right)+\mathrm{8}{ln}\left({u}+\mathrm{1}\right)+{c} \\ $$$$=\:{x}+\mathrm{3}\:\sqrt[{\mathrm{3}\:}]{{x}}\:+\mathrm{4}{ln}\left(\sqrt[{\mathrm{3}\:}]{{x}}−\mathrm{1}\right)+\mathrm{8}{ln}\left(\sqrt[{\mathrm{3}\:}]{{x}}+\mathrm{1}\right)+{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *