Question Number 11149 by suci last updated on 14/Mar/17
$$\int{x}^{\mathrm{5}} \:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} +\mathrm{1}}\:{dx}=…??? \\ $$
Answered by ajfour last updated on 14/Mar/17
$$\:\frac{\left({x}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{7}/\mathrm{3}} }{\mathrm{7}}−\frac{\left({x}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{4}/\mathrm{3}} }{\mathrm{4}}\:+{C}\: \\ $$
Commented by ajfour last updated on 14/Mar/17
$${let}\:\:\:{x}^{\mathrm{3}} +\mathrm{1}={t} \\ $$$$\mathrm{3}{x}^{\mathrm{2}} {dx}={dt} \\ $$$${so},\:\int{x}^{\mathrm{5}} \left({x}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{1}/\mathrm{3}} {dx}\: \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{3}}\int{x}^{\mathrm{3}} \left({x}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{1}/\mathrm{3}} \mathrm{3}{x}^{\mathrm{2}} {dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\int\left({t}−\mathrm{1}\right){t}^{\mathrm{1}/\mathrm{3}} {dt}=\frac{\mathrm{1}}{\mathrm{3}}\int\left({t}^{\mathrm{4}/\mathrm{3}} −{t}^{\mathrm{1}/\mathrm{3}} \right){dt} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{{t}^{\mathrm{7}/\mathrm{3}} }{\mathrm{7}/\mathrm{3}}\right)−\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{{t}^{\mathrm{4}/\mathrm{3}} }{\mathrm{4}/\mathrm{3}}\right)\:+{C} \\ $$$${hence}\:{the}\:{answer}. \\ $$
Answered by Mechas88 last updated on 17/Mar/17
$$ \\ $$$${u}=\left({x}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{1}/\mathrm{3}} \\ $$$${u}^{\mathrm{3}} ={x}^{\mathrm{3}} +\mathrm{1} \\ $$$${x}^{\mathrm{3}} ={u}^{\mathrm{3}} −\mathrm{1} \\ $$$${du}=\frac{\mathrm{1}}{\mathrm{3}}\left({x}^{\mathrm{3}} +\mathrm{1}\right)^{−\mathrm{2}/\mathrm{3}} \left(\mathrm{3}{x}^{\mathrm{2}} \right){dx}={x}^{\mathrm{2}} \left({x}^{\mathrm{3}} +\mathrm{1}\right)^{−\mathrm{2}/\mathrm{3}} {dx} \\ $$$${dx}={x}^{−\mathrm{2}} \left({x}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{2}/\mathrm{3}} {du} \\ $$$$ \\ $$$$\int{x}^{\mathrm{5}} {x}^{−\mathrm{2}} {udu}=\int\left({u}^{\mathrm{3}} −\mathrm{1}\right){udu}= \\ $$$$\int{u}^{\mathrm{4}} {du}−\int{udu}= \\ $$$$\frac{{u}^{\mathrm{5}} }{\mathrm{5}}\:−\:\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:+\:{C}= \\ $$$$\frac{\sqrt[{\mathrm{3}}]{\left({x}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{5}} }\:}{\mathrm{5}}\:−\frac{\sqrt[{\mathrm{3}}]{\left({x}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{2}} \:\:\:\:}}{\mathrm{2}}\:\:+\:\:{C}\:\:\ast\ast\ast{Rta} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$