Menu Close

x-5-x-3-1-1-3-dx-




Question Number 11149 by suci last updated on 14/Mar/17
∫x^5  ((x^3 +1))^(1/3)  dx=...???
x5x3+13dx=???
Answered by ajfour last updated on 14/Mar/17
 (((x^3 +1)^(7/3) )/7)−(((x^3 +1)^(4/3) )/4) +C
(x3+1)7/37(x3+1)4/34+C
Commented by ajfour last updated on 14/Mar/17
let   x^3 +1=t  3x^2 dx=dt  so, ∫x^5 (x^3 +1)^(1/3) dx   = (1/3)∫x^3 (x^3 +1)^(1/3) 3x^2 dx  =(1/3)∫(t−1)t^(1/3) dt=(1/3)∫(t^(4/3) −t^(1/3) )dt  = (1/3)((t^(7/3) /(7/3)))−(1/3)((t^(4/3) /(4/3))) +C  hence the answer.
letx3+1=t3x2dx=dtso,x5(x3+1)1/3dx=13x3(x3+1)1/33x2dx=13(t1)t1/3dt=13(t4/3t1/3)dt=13(t7/37/3)13(t4/34/3)+Chencetheanswer.
Answered by Mechas88 last updated on 17/Mar/17
  u=(x^3 +1)^(1/3)   u^3 =x^3 +1  x^3 =u^3 −1  du=(1/3)(x^3 +1)^(−2/3) (3x^2 )dx=x^2 (x^3 +1)^(−2/3) dx  dx=x^(−2) (x^3 +1)^(2/3) du    ∫x^5 x^(−2) udu=∫(u^3 −1)udu=  ∫u^4 du−∫udu=  (u^5 /5) − (u^2 /2) + C=  (((((x^3 +1)^5 ))^(1/3)  )/5) −((((x^3 +1)^2     ))^(1/3) /2)  +  C  ∗∗∗Rta
u=(x3+1)1/3u3=x3+1x3=u31du=13(x3+1)2/3(3x2)dx=x2(x3+1)2/3dxdx=x2(x3+1)2/3dux5x2udu=(u31)udu=u4duudu=u55u22+C=(x3+1)535(x3+1)232+CRta

Leave a Reply

Your email address will not be published. Required fields are marked *