Question Number 132473 by physicstutes last updated on 14/Feb/21
$$\int\:\frac{{x}\:\mathrm{cosh}\:{x}}{\left(\mathrm{sinh}\:{x}\right)^{\mathrm{2}} }\:{dx} \\ $$
Answered by mathmax by abdo last updated on 14/Feb/21
$$\mathrm{I}=\int\:\frac{\mathrm{xchx}}{\mathrm{sh}^{\mathrm{2}} \mathrm{x}}\mathrm{dx}\:\:\mathrm{by}\:\mathrm{parts}\:\:\mathrm{u}^{'} \:=\frac{\mathrm{chx}}{\mathrm{sh}^{\mathrm{2}} \mathrm{x}}\:\mathrm{and}\:\mathrm{v}=\mathrm{x}\:\Rightarrow \\ $$$$\mathrm{I}\:=−\frac{\mathrm{x}}{\mathrm{shx}}−\int\:\:\left(−\frac{\mathrm{1}}{\mathrm{shx}}\right)\mathrm{dx}\:=−\frac{\mathrm{x}}{\mathrm{shx}}\:+\int\:\:\frac{\mathrm{dx}}{\mathrm{shx}}\:\mathrm{we}\:\mathrm{have}\: \\ $$$$\int\:\frac{\mathrm{dx}}{\mathrm{shx}}\:=\mathrm{2}\int\:\frac{\mathrm{dx}}{\mathrm{e}^{\mathrm{x}} −\mathrm{e}^{−\mathrm{x}} }\:=_{\mathrm{e}^{\mathrm{x}} \:=\mathrm{t}} \:\:\mathrm{2}\int\:\:\frac{\mathrm{dt}}{\mathrm{t}\left(\mathrm{t}−\mathrm{t}^{−\mathrm{1}} \right)}\:=\int\:\frac{\mathrm{2dt}}{\mathrm{t}^{\mathrm{2}} −\mathrm{1}} \\ $$$$=\int\left(\frac{\mathrm{1}}{\mathrm{t}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{t}+\mathrm{1}}\right)\mathrm{dt}\:=\mathrm{ln}\mid\frac{\mathrm{t}−\mathrm{1}}{\mathrm{t}+\mathrm{1}}\mid\:+\mathrm{C}\:=\mathrm{ln}\mid\frac{\mathrm{e}^{\mathrm{x}} −\mathrm{1}}{\mathrm{e}^{\mathrm{x}} +\mathrm{1}}\mid+\mathrm{C}\:\Rightarrow \\ $$$$\mathrm{I}\:=−\frac{\mathrm{x}}{\mathrm{shx}}\:+\mathrm{ln}\mid\frac{\mathrm{e}^{\mathrm{x}} −\mathrm{1}}{\mathrm{e}^{\mathrm{x}} \:+\mathrm{1}}\mid\:+\mathrm{C} \\ $$