Question Number 77631 by Maclaurin Stickker last updated on 08/Jan/20
$${x}^{{log}_{\mathrm{3}} \left(\mathrm{2}\right)} =\sqrt{{x}}+\mathrm{1} \\ $$
Answered by mr W last updated on 08/Jan/20
$$\mathrm{log}\:_{\mathrm{3}} \mathrm{2}=\mathrm{log}_{{x}} \:\left(\sqrt{{x}}+\mathrm{1}\right) \\ $$$$\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{ln}\:\mathrm{3}}=\frac{\mathrm{ln}\:\left(\sqrt{{x}}+\mathrm{1}\right)}{\mathrm{ln}\:{x}} \\ $$$$\frac{\mathrm{ln}\:\mathrm{2}^{{n}} }{\mathrm{ln}\:\mathrm{3}^{{n}} }=\frac{\mathrm{ln}\:\left(\sqrt{{x}}+\mathrm{1}\right)}{\mathrm{ln}\:{x}} \\ $$$$\Rightarrow{x}=\mathrm{3}^{{n}} \\ $$$$\Rightarrow\sqrt{{x}}+\mathrm{1}=\mathrm{2}^{{n}} \\ $$$${we}\:{see}\:{the}\:{only}\:{solution}\:{is}\:{n}=\mathrm{2}: \\ $$$${x}=\mathrm{3}^{\mathrm{2}} =\mathrm{9} \\ $$$$\sqrt{{x}}+\mathrm{1}=\sqrt{\mathrm{9}}+\mathrm{1}=\mathrm{4}=\mathrm{2}^{\mathrm{2}} \:\Rightarrow{ok} \\ $$$${therefore}\:{x}=\mathrm{9}. \\ $$