x-m-1-x-n-1-dx-n-gt-m-m-n-Z- Tinku Tara June 3, 2023 None 0 Comments FacebookTweetPin Question Number 134469 by SEKRET last updated on 04/Mar/21 ∫xm+1xn+1dx=?n>mm;n∈Z+ Answered by Olaf last updated on 04/Mar/21 xn+1=0⇔x=eiπn(1+2k),k∈{0,1,…,n−1}Letxk=eiπn(1+2k),k∈{0,1,…,n−1}Rm,n(x)=xm+1xn+1,n>mRm,n(x)=∑n−1k=0Akx−xkAk=xkm+1∏n−1j=0j≠k(xk−xj)Im,n(x)=∫Rm,n(x)dxIm,n(x)=∑n−1k=0Akln∣x−xk∣+C Answered by Dwaipayan Shikari last updated on 04/Mar/21 ∫xm+1xn+1dx=∫(xm+1)(1−xn)1(1−x2n)dx=∑∞k=0∫(12)kk!(xm+1)(1−xn)x2nkdx=∑∞k=0(12)kk!(x2nk+m+12nk+m+1+x2nk+12nk+1−xm+n+2nk+1m+n+2nk+1−xn+2nk+1n+1+2nk)=x2n∑∞k=0(12)kx2nk+mk!(k+m+12n)+(12)kx2nkk!(k+12n)−(12)kxm+n+2nkk!(k+m+n+12n)−(12)kx2nk+nk!(k+n+12n)=x2n(Ψ+Φ−Λ−φ)Ψ=∑∞k=0(12)kΓ(k+m+12n)k!Γ(k+m+12n+1)x2nk+m=(1+2nm+1)∑∞k=0(12)k(m+12n)kk!(m+12n+1)kx2nk+m=xm(1+2nm+1)2F1(12,m+12n;m+1+2n2n;x2n)Φ=(1+2n)2F1(12,12n;1+2n2n;x2n)Λ=xm+n(1+2nm+n+1)2F1(12,m+n+12n,m+3n+12n;x2n)φ=xn(1+2nn+1)2F1(12,n+12n;3n+12n;x2n) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-all-values-for-x-x-2-7x-11-x-2-13x-42-1-Easy-Next Next post: If-1-cos-x-cos-2x-cos-3x-cos-4x-3-for-0-lt-x-pi-2-find-the-value-of-sin-x-sin-2x-sin-3x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.