Question Number 134469 by SEKRET last updated on 04/Mar/21
$$\:\:\:\int\:\:\frac{\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{m}}} +\mathrm{1}}{\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}} +\mathrm{1}}\:\boldsymbol{\mathrm{dx}}\:\:=?\:\:\:\:\:\boldsymbol{\mathrm{n}}>\boldsymbol{\mathrm{m}}\:\:\:\:\:\:\boldsymbol{\mathrm{m}};\boldsymbol{\mathrm{n}}\in\boldsymbol{\mathrm{Z}}^{+} \\ $$
Answered by Olaf last updated on 04/Mar/21
$${x}^{{n}} +\mathrm{1}\:=\:\mathrm{0}\:\Leftrightarrow\:{x}\:=\:{e}^{{i}\frac{\pi}{{n}}\left(\mathrm{1}+\mathrm{2}{k}\right)} ,\:{k}\in\left\{\mathrm{0},\:\mathrm{1},…,\:{n}−\mathrm{1}\right\} \\ $$$$\mathrm{Let}\:{x}_{{k}} \:=\:{e}^{{i}\frac{\pi}{{n}}\left(\mathrm{1}+\mathrm{2}{k}\right)} ,\:{k}\in\left\{\mathrm{0},\:\mathrm{1},…,\:{n}−\mathrm{1}\right\} \\ $$$$\mathrm{R}_{{m},{n}} \left({x}\right)\:=\:\frac{{x}^{{m}} +\mathrm{1}}{{x}^{{n}} +\mathrm{1}},\:{n}>{m} \\ $$$$\mathrm{R}_{{m},{n}} \left({x}\right)\:=\:\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\mathrm{A}_{{k}} }{{x}−{x}_{{k}} } \\ $$$$\mathrm{A}_{{k}} \:=\:\frac{{x}_{{k}} ^{{m}} +\mathrm{1}}{\underset{\underset{{j}\neq{k}} {{j}=\mathrm{0}}} {\overset{{n}−\mathrm{1}} {\prod}}\left({x}_{{k}} −{x}_{{j}} \right)} \\ $$$$\mathrm{I}_{{m},{n}} \left({x}\right)\:=\:\int\mathrm{R}_{{m},{n}} \left({x}\right){dx} \\ $$$$\mathrm{I}_{{m},{n}} \left({x}\right)\:=\:\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\mathrm{A}_{{k}} \mathrm{ln}\mid{x}−{x}_{{k}} \mid+\mathrm{C} \\ $$
Answered by Dwaipayan Shikari last updated on 04/Mar/21
$$\int\frac{{x}^{{m}} +\mathrm{1}}{{x}^{{n}} +\mathrm{1}}{dx} \\ $$$$=\int\left({x}^{{m}} +\mathrm{1}\right)\left(\mathrm{1}−{x}^{{n}} \right)\frac{\mathrm{1}}{\left(\mathrm{1}−{x}^{\mathrm{2}{n}} \right)}{dx} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\int\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{k}} }{{k}!}\left({x}^{{m}} +\mathrm{1}\right)\left(\mathrm{1}−{x}^{{n}} \right){x}^{\mathrm{2}{nk}} {dx} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{k}} }{{k}!}\left(\frac{{x}^{\mathrm{2}{nk}+{m}+\mathrm{1}} }{\mathrm{2}{nk}+{m}+\mathrm{1}}+\frac{{x}^{\mathrm{2}{nk}+\mathrm{1}} }{\mathrm{2}{nk}+\mathrm{1}}−\frac{{x}^{{m}+{n}+\mathrm{2}{nk}+\mathrm{1}} }{{m}+{n}+\mathrm{2}{nk}+\mathrm{1}}−\frac{{x}^{{n}+\mathrm{2}{nk}+\mathrm{1}} }{{n}+\mathrm{1}+\mathrm{2}{nk}}\right) \\ $$$$=\frac{{x}}{\mathrm{2}{n}}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{k}} {x}^{\mathrm{2}{nk}+{m}} }{{k}!\left({k}+\frac{{m}+\mathrm{1}}{\mathrm{2}{n}}\right)}+\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{k}} {x}^{\mathrm{2}{nk}} }{{k}!\left({k}+\frac{\mathrm{1}}{\mathrm{2}{n}}\right)}−\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{k}} {x}^{{m}+{n}+\mathrm{2}{nk}} }{{k}!\left({k}+\frac{{m}+{n}+\mathrm{1}}{\mathrm{2}{n}}\right)}−\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{k}} {x}^{\mathrm{2}{nk}+{n}} }{{k}!\left({k}+\frac{{n}+\mathrm{1}}{\mathrm{2}{n}}\right)} \\ $$$$=\frac{{x}}{\mathrm{2}{n}}\left(\Psi+\Phi−\Lambda−\varphi\right) \\ $$$$\Psi=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{k}} \Gamma\left({k}+\frac{{m}+\mathrm{1}}{\mathrm{2}{n}}\right)}{{k}!\Gamma\left({k}+\frac{{m}+\mathrm{1}}{\mathrm{2}{n}}+\mathrm{1}\right)}{x}^{\mathrm{2}{nk}+{m}} =\left(\mathrm{1}+\frac{\mathrm{2}{n}}{{m}+\mathrm{1}}\right)\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{k}} \left(\frac{{m}+\mathrm{1}}{\mathrm{2}{n}}\right)_{{k}} }{{k}!\left(\frac{{m}+\mathrm{1}}{\mathrm{2}{n}}+\mathrm{1}\right)_{{k}} }{x}^{\mathrm{2}{nk}+{m}} \\ $$$$={x}^{{m}} \left(\mathrm{1}+\frac{\mathrm{2}{n}}{{m}+\mathrm{1}}\right)\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},\frac{{m}+\mathrm{1}}{\mathrm{2}{n}};\frac{{m}+\mathrm{1}+\mathrm{2}{n}}{\mathrm{2}{n}}\:;{x}^{\mathrm{2}{n}} \right) \\ $$$$\Phi=\left(\mathrm{1}+\mathrm{2}{n}\right)\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}{n}};\frac{\mathrm{1}+\mathrm{2}{n}}{\mathrm{2}{n}};{x}^{\mathrm{2}{n}} \right) \\ $$$$\Lambda={x}^{{m}+{n}} \left(\mathrm{1}+\frac{\mathrm{2}{n}}{{m}+{n}+\mathrm{1}}\right)\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},\frac{{m}+{n}+\mathrm{1}}{\mathrm{2}{n}},\frac{{m}+\mathrm{3}{n}+\mathrm{1}}{\mathrm{2}{n}};{x}^{\mathrm{2}{n}} \right)\: \\ $$$$\varphi={x}^{{n}} \left(\mathrm{1}+\frac{\mathrm{2}{n}}{{n}+\mathrm{1}}\right)\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},\frac{{n}+\mathrm{1}}{\mathrm{2}{n}};\frac{\mathrm{3}{n}+\mathrm{1}}{\mathrm{2}{n}};{x}^{\mathrm{2}{n}} \right) \\ $$