Menu Close

x-x-1-2-dx-y-2y-1-2-dy-1-4sec-x-dx-y-sec-3-2x-5-y-




Question Number 5048 by LMTV last updated on 05/Apr/16
∫(x(√x)+1)^2 dx=?  ∫y(2y+1)^2 dy=?  ∫(1/(4sec x))dx=?  y=sec^3  (2x+5)  y′=?
$$\int\left({x}\sqrt{{x}}+\mathrm{1}\right)^{\mathrm{2}} {dx}=? \\ $$$$\int{y}\left(\mathrm{2}{y}+\mathrm{1}\right)^{\mathrm{2}} {dy}=? \\ $$$$\int\frac{\mathrm{1}}{\mathrm{4sec}\:{x}}{dx}=? \\ $$$${y}=\mathrm{sec}^{\mathrm{3}} \:\left(\mathrm{2}{x}+\mathrm{5}\right) \\ $$$${y}'=? \\ $$
Commented by prakash jain last updated on 05/Apr/16
y=sec^3 (2x+5)  Successive application of Chain rule (dy/dx)=(dy/du)∙(du/dx)  y′=3sec^2 (2x+5)[sec (2x+5)tan (2x+5)][2]  =6sec^3 (2x+5)tan (2x+5)  ∫(1/(4sec x))dx=(1/4)∫cos x dx=(1/4)sin x+C
$${y}=\mathrm{sec}^{\mathrm{3}} \left(\mathrm{2}{x}+\mathrm{5}\right) \\ $$$$\mathrm{Successive}\:\mathrm{application}\:\mathrm{of}\:\mathrm{Chain}\:\mathrm{rule}\:\frac{{dy}}{{dx}}=\frac{{dy}}{{du}}\centerdot\frac{{du}}{{dx}} \\ $$$${y}'=\mathrm{3sec}^{\mathrm{2}} \left(\mathrm{2}{x}+\mathrm{5}\right)\left[\mathrm{sec}\:\left(\mathrm{2}{x}+\mathrm{5}\right)\mathrm{tan}\:\left(\mathrm{2}{x}+\mathrm{5}\right)\right]\left[\mathrm{2}\right] \\ $$$$=\mathrm{6sec}^{\mathrm{3}} \left(\mathrm{2}{x}+\mathrm{5}\right)\mathrm{tan}\:\left(\mathrm{2}{x}+\mathrm{5}\right) \\ $$$$\int\frac{\mathrm{1}}{\mathrm{4sec}\:{x}}\mathrm{d}{x}=\frac{\mathrm{1}}{\mathrm{4}}\int\mathrm{cos}\:{x}\:\mathrm{d}{x}=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}\:{x}+{C} \\ $$
Answered by prakash jain last updated on 05/Apr/16
∫y(2y+1)^2 dy=∫y(4y^2 +4y+1)dy  =∫(4y^3 +4y^2 +y)dy  =4(y^4 /4)+4(y^3 /3)+(y^2 /2)+C  =(1/6)(6y^4 +8y^3 +3y^2 )+C
$$\int{y}\left(\mathrm{2}{y}+\mathrm{1}\right)^{\mathrm{2}} {dy}=\int{y}\left(\mathrm{4}{y}^{\mathrm{2}} +\mathrm{4}{y}+\mathrm{1}\right){dy} \\ $$$$=\int\left(\mathrm{4}{y}^{\mathrm{3}} +\mathrm{4}{y}^{\mathrm{2}} +{y}\right){dy} \\ $$$$=\mathrm{4}\frac{{y}^{\mathrm{4}} }{\mathrm{4}}+\mathrm{4}\frac{{y}^{\mathrm{3}} }{\mathrm{3}}+\frac{{y}^{\mathrm{2}} }{\mathrm{2}}+{C} \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\left(\mathrm{6}{y}^{\mathrm{4}} +\mathrm{8}{y}^{\mathrm{3}} +\mathrm{3}{y}^{\mathrm{2}} \right)+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *