Menu Close

x-x-1-x-2-x-n-y-y-1-y-2-y-n-x-y-R-n-1-Prove-the-length-of-the-vector-x-denoted-x-is-equal-to-x-1-2-x-2-2-x-n-2-




Question Number 10562 by FilupS last updated on 18/Feb/17
x= [(x_1 ),(x_2 ),(( ⋮)),(x_n ) ]            y= [(y_1 ),(y_2 ),(( ⋮)),(y_n ) ]        x, y ∈ R^n      1. Prove the length of the vector x, denoted ∣∣x∣∣,       is equal to (√(x_1 ^2 +x_2 ^2 +...+x_n ^2 ))  2. Determine if   ∣∣x−y∣∣=∣∣y−x∣∣
$$\boldsymbol{{x}}=\begin{bmatrix}{{x}_{\mathrm{1}} }\\{{x}_{\mathrm{2}} }\\{\:\vdots}\\{{x}_{{n}} }\end{bmatrix}\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{y}}=\begin{bmatrix}{{y}_{\mathrm{1}} }\\{{y}_{\mathrm{2}} }\\{\:\vdots}\\{{y}_{{n}} }\end{bmatrix}\:\:\:\:\:\:\:\:\boldsymbol{{x}},\:\boldsymbol{{y}}\:\in\:\mathbb{R}^{{n}} \\ $$$$\: \\ $$$$\mathrm{1}.\:\mathrm{Prove}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{vector}\:\boldsymbol{{x}},\:\mathrm{denoted}\:\mid\mid\boldsymbol{{x}}\mid\mid, \\ $$$$\:\:\:\:\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\sqrt{{x}_{\mathrm{1}} ^{\mathrm{2}} +{x}_{\mathrm{2}} ^{\mathrm{2}} +…+{x}_{{n}} ^{\mathrm{2}} } \\ $$$$\mathrm{2}.\:\mathrm{Determine}\:\mathrm{if}\:\:\:\mid\mid\boldsymbol{{x}}−\boldsymbol{{y}}\mid\mid=\mid\mid\boldsymbol{{y}}−\boldsymbol{{x}}\mid\mid \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *