Question Number 137594 by Ñï= last updated on 04/Apr/21
$$\left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right)\left({y}+\sqrt{{y}^{\mathrm{4}} +\mathrm{4}}\right)=\mathrm{9} \\ $$$${x}\sqrt{{y}^{\mathrm{4}} +\mathrm{4}}+{y}\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}=? \\ $$
Answered by bemath last updated on 04/Apr/21
$${let}\:{x}=\mathrm{tan}\:{t}\:\wedge\:{y}=\mathrm{2tan}\:{z} \\ $$$$\Rightarrow\left(\mathrm{tan}\:{t}+\mathrm{sec}\:{t}\right)\left(\mathrm{2tan}\:{z}+\mathrm{2sec}\:{z}\right)=\mathrm{9} \\ $$$$\left(\mathrm{tan}\:{t}+\mathrm{sec}\:{t}\right)\left(\mathrm{tan}\:{z}+\mathrm{sec}\:{z}\right)=\frac{\mathrm{9}}{\mathrm{2}} \\ $$$$\Leftrightarrow\mathrm{tan}\:{t}.\mathrm{tan}\:{z}+\mathrm{tan}\:{t}.\mathrm{sec}\:{z}+\mathrm{sec}\:{t}.\mathrm{tan}\:{z}+\mathrm{sec}\:{t}.\mathrm{sec}\:{z}=\frac{\mathrm{9}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{tan}\:{t}.\:\mathrm{2sec}\:{z}\:+\:\mathrm{2tan}\:{z}.\:\mathrm{sec}\:{t}\:=\:{x} \\ $$$$\Rightarrow\mathrm{tan}\:{t}.\mathrm{sec}\:{z}\:+\:\mathrm{tan}\:{z}.\mathrm{sec}\:{t}\:=\:\frac{{x}}{\mathrm{2}} \\ $$$$ \\ $$