Menu Close

x-x-2-5-dx-3-x-x-2-5-dx-x-x-2-2-x-2-5-dx-




Question Number 72494 by aliesam last updated on 29/Oct/19
((∫x(√(x^2 +5)) dx−3∫(x/( (√(x^2 +5))))dx)/(∫((x(x^2 +2))/( (√(x^2 +5)))) dx))
xx2+5dx3xx2+5dxx(x2+2)x2+5dx
Commented by mathmax by abdo last updated on 29/Oct/19
let I=∫x(√(x^2 +5))dx  , J =∫   ((xdx)/( (√(x^2  +5))))  K = ∫  ((x(x^2  +2))/( (√(x^2  +5))))dx  we have I−J =∫((x(x^2 +5)−3x)/( (√(x^2  +5))))dx  =∫((x^3 +5x−3x)/( (√(x^2 +5))))dx =∫ ((x(x^2 +2))/( (√(x^2 +5))))dx ⇒ ((I−3J)/K) =1
letI=xx2+5dx,J=xdxx2+5K=x(x2+2)x2+5dxwehaveIJ=x(x2+5)3xx2+5dx=x3+5x3xx2+5dx=x(x2+2)x2+5dxI3JK=1
Answered by Tanmay chaudhury last updated on 29/Oct/19
I=((I_1 −3I_2 )/I_3 )  I_1 =∫x(√(x^2 +5))  dx  =(1/2)∫(x^2 +5)^(1/2) ×d(x^2 +5)  =(1/2)×(((x^2 +5)^(3/2) )/(3/2))+c_1   I_2 =∫(x/( (√(x^2 +5))))dx  =(1/2)∫(x^2 +5)^((−1)/2) ×d(x^2 +5)  =(1/2)×(((x^2 +5)^(1/2) )/(1/2))+c_2   ∫((x(x^2 +2))/( (√(x^2 +5))))dx  k^2 =x^2 +5→2kdk=2xdx  ∫((k^2 −5+2)/k)×kdk  ∫k^2 −3  dk  (k^3 /3)−3k+c_3   (((x^2 +5)^(3/2) )/3)−3(x^2 +5)^(1/2) +c_3   now pls put the values to get I...
I=I13I2I3I1=xx2+5dx=12(x2+5)12×d(x2+5)=12×(x2+5)3232+c1I2=xx2+5dx=12(x2+5)12×d(x2+5)=12×(x2+5)1212+c2x(x2+2)x2+5dxk2=x2+52kdk=2xdxk25+2k×kdkk23dkk333k+c3(x2+5)3233(x2+5)12+c3nowplsputthevaluestogetI
Commented by aliesam last updated on 29/Oct/19
thank you so much sir. god bless you
thankyousomuchsir.godblessyou
Commented by Tanmay chaudhury last updated on 29/Oct/19
most welcome sir
mostwelcomesir

Leave a Reply

Your email address will not be published. Required fields are marked *