Menu Close

x-x-dx-




Question Number 6118 by sanusihammed last updated on 15/Jun/16
∫x^x  dx
xxdx
Commented by FilupSmith last updated on 15/Jun/16
ANSWER:  x^x =e^(xln(x))   e^x =1+x+(x^2 /(2!))+(x^3 /(3!))+...  ∴e^(xln(x)) =1+(xln(x))^1 +(((xln(x))^2 )/(2!))+...  e^(xlnx) =Σ_(n=0) ^∞ ((x^n ln(x)^n )/(n!))    ∴∫x^x dx=∫ Σ_(n=0) ^∞ ((x^n ln(x)^n )/(n!))dx  =Σ_(n=0) ^∞ ∫ ((x^n ln(x)^n )/(n!))dx  =Σ_(n=0) ^∞ (1/(n!))∫ x^n ln(x)^n dx    let x=e^(−(u/(n+1)))   ∴dx=−(1/(n+1))e^(−(u/(n+1))) du  =Σ_(n=0) ^∞ (1/(n!))∫ e^(−((un)/(n+1))) ln(e^(−(u/(n+1))) )^n (−(1/(n+1))e^(−(u/(n+1))) )du  =Σ_(n=0) ^∞ (1/(n!))∫ e^(−((un)/(n+1))) ((((−u)^n )/((n+1)^n )))(−(1/(n+1))e^(−(u/(n+1))) )du  =Σ_(n=0) ^∞ −(1/(n!))∫ e^(−(((un)/(n+1))+(u/(n+1)))) ((((−1)^n (u)^n )/((n+1)^n )))(1/(n+1))du  ((un)/(n+1))+(u/(n+1))=((un+u)/(n+1))=((u(n+1))/((n+1)))=u  =Σ_(n=0) ^∞ −(((−1)^n )/(n!))∫ e^(−u) (((u)^n )/((n+1)^(n+1) ))du    ∴∫x^x dx=Σ_(n=0) ^∞ (−(1/(n!))(−1)^n (n+1)^(−(n+1)) ∫ e^(−u) u^n du)  from Q6042  ∫e^(−u) u^n du=Cn!−e^(−u) n!(Σ_(r=0) ^n (u^(n−r) /((n−r)!))), C=constant
ANSWER:xx=exln(x)ex=1+x+x22!+x33!+exln(x)=1+(xln(x))1+(xln(x))22!+exlnx=n=0xnln(x)nn!xxdx=n=0xnln(x)nn!dx=n=0xnln(x)nn!dx=n=01n!xnln(x)ndxletx=eun+1dx=1n+1eun+1du=n=01n!eunn+1ln(eun+1)n(1n+1eun+1)du=n=01n!eunn+1((u)n(n+1)n)(1n+1eun+1)du=n=01n!e(unn+1+un+1)((1)n(u)n(n+1)n)1n+1duunn+1+un+1=un+un+1=u(n+1)(n+1)=u=n=0(1)nn!eu(u)n(n+1)n+1duxxdx=n=0(1n!(1)n(n+1)(n+1)euundu)fromQ6042euundu=Cn!eun!(nr=0unr(nr)!),C=constant
Commented by FilupSmith last updated on 15/Jun/16
an interesting/special result:  ∫_0 ^( 1) x^x dx=Σ_(n=0) ^∞ (−(1/(n!))(−1)^n (n+1)^(−(n+1)) ∫_a ^( b)  e^(−u) u^n du)  x=exp(−(u/(n+1)))  ⇒u=−(n+1)ln(x)     a=−(n+1)ln(0)  ∴a=−(−∞)=∞     b=−(n+1)ln(1)  ∴b=0    ∴∫_0 ^( 1) x^x dx=Σ_(n=0) ^∞ (−(1/(n!))(−1)^n (n+1)^(−(n+1)) ∫_∞ ^^0   e^(−u) u^n du)  =Σ_(n=0) ^∞ (+(1/(n!))(−1)^n (n+1)^(−(n+1)) ∫_0 ^^∞   e^(−u) u^n du)  ∫_0 ^^∞   e^(−u) u^n du=n!  =Σ_(n=0) ^∞ (((n!)/(n!))(−1)^n (n+1)^(−(n+1)) )     ∴∫_0 ^( 1) x^x dx=Σ_(n=0) ^∞ (−1)^n (n+1)^(−(n+1))
aninteresting/specialresult:01xxdx=n=0(1n!(1)n(n+1)(n+1)abeuundu)x=exp(un+1)u=(n+1)ln(x)a=(n+1)ln(0)a=()=b=(n+1)ln(1)b=001xxdx=n=0(1n!(1)n(n+1)(n+1)0euundu)=n=0(+1n!(1)n(n+1)(n+1)0euundu)0euundu=n!=n=0(n!n!(1)n(n+1)(n+1))01xxdx=n=0(1)n(n+1)(n+1)
Commented by sanusihammed last updated on 15/Jun/16
Thanks so much.
Thankssomuch.

Leave a Reply

Your email address will not be published. Required fields are marked *