Question Number 6118 by sanusihammed last updated on 15/Jun/16
$$\int{x}^{{x}} \:{dx} \\ $$
Commented by FilupSmith last updated on 15/Jun/16
$$\mathrm{ANSWER}: \\ $$$${x}^{{x}} ={e}^{{x}\mathrm{ln}\left({x}\right)} \\ $$$${e}^{{x}} =\mathrm{1}+{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+… \\ $$$$\therefore{e}^{{x}\mathrm{ln}\left({x}\right)} =\mathrm{1}+\left({x}\mathrm{ln}\left({x}\right)\right)^{\mathrm{1}} +\frac{\left({x}\mathrm{ln}\left({x}\right)\right)^{\mathrm{2}} }{\mathrm{2}!}+… \\ $$$${e}^{{x}\mathrm{ln}{x}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} \mathrm{ln}\left({x}\right)^{{n}} }{{n}!} \\ $$$$ \\ $$$$\therefore\int{x}^{{x}} {dx}=\int\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} \mathrm{ln}\left({x}\right)^{{n}} }{{n}!}{dx} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int\:\frac{{x}^{{n}} \mathrm{ln}\left({x}\right)^{{n}} }{{n}!}{dx} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\int\:{x}^{{n}} \mathrm{ln}\left({x}\right)^{{n}} {dx} \\ $$$$ \\ $$$$\mathrm{let}\:{x}={e}^{−\frac{{u}}{{n}+\mathrm{1}}} \\ $$$$\therefore{dx}=−\frac{\mathrm{1}}{{n}+\mathrm{1}}{e}^{−\frac{{u}}{{n}+\mathrm{1}}} {du} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\int\:{e}^{−\frac{{un}}{{n}+\mathrm{1}}} \mathrm{ln}\left({e}^{−\frac{{u}}{{n}+\mathrm{1}}} \right)^{{n}} \left(−\frac{\mathrm{1}}{{n}+\mathrm{1}}{e}^{−\frac{{u}}{{n}+\mathrm{1}}} \right){du} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\int\:{e}^{−\frac{{un}}{{n}+\mathrm{1}}} \left(\frac{\left(−{u}\right)^{{n}} }{\left({n}+\mathrm{1}\right)^{{n}} }\right)\left(−\frac{\mathrm{1}}{{n}+\mathrm{1}}{e}^{−\frac{{u}}{{n}+\mathrm{1}}} \right){du} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}−\frac{\mathrm{1}}{{n}!}\int\:{e}^{−\left(\frac{{un}}{{n}+\mathrm{1}}+\frac{{u}}{{n}+\mathrm{1}}\right)} \left(\frac{\left(−\mathrm{1}\right)^{{n}} \left({u}\right)^{{n}} }{\left({n}+\mathrm{1}\right)^{{n}} }\right)\frac{\mathrm{1}}{{n}+\mathrm{1}}{du} \\ $$$$\frac{{un}}{{n}+\mathrm{1}}+\frac{{u}}{{n}+\mathrm{1}}=\frac{{un}+{u}}{{n}+\mathrm{1}}=\frac{{u}\left({n}+\mathrm{1}\right)}{\left({n}+\mathrm{1}\right)}={u} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}−\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\int\:{e}^{−{u}} \frac{\left({u}\right)^{{n}} }{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }{du} \\ $$$$ \\ $$$$\therefore\int{x}^{{x}} {dx}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\frac{\mathrm{1}}{{n}!}\left(−\mathrm{1}\right)^{{n}} \left({n}+\mathrm{1}\right)^{−\left({n}+\mathrm{1}\right)} \int\:{e}^{−{u}} {u}^{{n}} {du}\right) \\ $$$${from}\:{Q}\mathrm{6042} \\ $$$$\int{e}^{−{u}} {u}^{{n}} {du}={Cn}!−{e}^{−{u}} {n}!\left(\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{u}^{{n}−{r}} }{\left({n}−{r}\right)!}\right),\:{C}=\mathrm{constant} \\ $$
Commented by FilupSmith last updated on 15/Jun/16
$${an}\:{interesting}/{special}\:{result}: \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}^{{x}} {dx}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\frac{\mathrm{1}}{{n}!}\left(−\mathrm{1}\right)^{{n}} \left({n}+\mathrm{1}\right)^{−\left({n}+\mathrm{1}\right)} \int_{{a}} ^{\:{b}} \:{e}^{−{u}} {u}^{{n}} {du}\right) \\ $$$${x}=\mathrm{exp}\left(−\frac{{u}}{{n}+\mathrm{1}}\right) \\ $$$$\Rightarrow{u}=−\left({n}+\mathrm{1}\right)\mathrm{ln}\left({x}\right) \\ $$$$\: \\ $$$${a}=−\left({n}+\mathrm{1}\right)\mathrm{ln}\left(\mathrm{0}\right) \\ $$$$\therefore{a}=−\left(−\infty\right)=\infty \\ $$$$\: \\ $$$${b}=−\left({n}+\mathrm{1}\right)\mathrm{ln}\left(\mathrm{1}\right) \\ $$$$\therefore{b}=\mathrm{0} \\ $$$$ \\ $$$$\therefore\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}^{{x}} {dx}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\frac{\mathrm{1}}{{n}!}\left(−\mathrm{1}\right)^{{n}} \left({n}+\mathrm{1}\right)^{−\left({n}+\mathrm{1}\right)} \int_{\infty} ^{\:^{\mathrm{0}} } \:{e}^{−{u}} {u}^{{n}} {du}\right) \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(+\frac{\mathrm{1}}{{n}!}\left(−\mathrm{1}\right)^{{n}} \left({n}+\mathrm{1}\right)^{−\left({n}+\mathrm{1}\right)} \int_{\mathrm{0}} ^{\:^{\infty} } \:{e}^{−{u}} {u}^{{n}} {du}\right) \\ $$$$\int_{\mathrm{0}} ^{\:^{\infty} } \:{e}^{−{u}} {u}^{{n}} {du}={n}! \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{{n}!}{{n}!}\left(−\mathrm{1}\right)^{{n}} \left({n}+\mathrm{1}\right)^{−\left({n}+\mathrm{1}\right)} \right) \\ $$$$\: \\ $$$$\therefore\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}^{{x}} {dx}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \left({n}+\mathrm{1}\right)^{−\left({n}+\mathrm{1}\right)} \\ $$
Commented by sanusihammed last updated on 15/Jun/16
$${Thanks}\:{so}\:{much}. \\ $$