x-x-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 6118 by sanusihammed last updated on 15/Jun/16 ∫xxdx Commented by FilupSmith last updated on 15/Jun/16 ANSWER:xx=exln(x)ex=1+x+x22!+x33!+…∴exln(x)=1+(xln(x))1+(xln(x))22!+…exlnx=∑∞n=0xnln(x)nn!∴∫xxdx=∫∑∞n=0xnln(x)nn!dx=∑∞n=0∫xnln(x)nn!dx=∑∞n=01n!∫xnln(x)ndxletx=e−un+1∴dx=−1n+1e−un+1du=∑∞n=01n!∫e−unn+1ln(e−un+1)n(−1n+1e−un+1)du=∑∞n=01n!∫e−unn+1((−u)n(n+1)n)(−1n+1e−un+1)du=∑∞n=0−1n!∫e−(unn+1+un+1)((−1)n(u)n(n+1)n)1n+1duunn+1+un+1=un+un+1=u(n+1)(n+1)=u=∑∞n=0−(−1)nn!∫e−u(u)n(n+1)n+1du∴∫xxdx=∑∞n=0(−1n!(−1)n(n+1)−(n+1)∫e−uundu)fromQ6042∫e−uundu=Cn!−e−un!(∑nr=0un−r(n−r)!),C=constant Commented by FilupSmith last updated on 15/Jun/16 aninteresting/specialresult:∫01xxdx=∑∞n=0(−1n!(−1)n(n+1)−(n+1)∫abe−uundu)x=exp(−un+1)⇒u=−(n+1)ln(x)a=−(n+1)ln(0)∴a=−(−∞)=∞b=−(n+1)ln(1)∴b=0∴∫01xxdx=∑∞n=0(−1n!(−1)n(n+1)−(n+1)∫∞0e−uundu)=∑∞n=0(+1n!(−1)n(n+1)−(n+1)∫0∞e−uundu)∫0∞e−uundu=n!=∑∞n=0(n!n!(−1)n(n+1)−(n+1))∴∫01xxdx=∑∞n=0(−1)n(n+1)−(n+1) Commented by sanusihammed last updated on 15/Jun/16 Thankssomuch. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Some-useful-approximations-of-sine-function-sin-pi-7-96-221-sin-pi-9-128-373-sin-pi-11-32-113-I-am-counting-more-thanking-you-Next Next post: cos-x-1-cos-x-sin-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.