Question Number 140329 by benjo_mathlover last updated on 06/May/21
$$\:\mathrm{x}^{\lfloor\mathrm{x}\rfloor} \:+\:\mathrm{x}^{\lceil\mathrm{x}\rceil} \:=\:\frac{\mathrm{175}}{\mathrm{8}} \\ $$
Answered by john_santu last updated on 06/May/21
$$\:\mathrm{0}<{x}<\mathrm{1}\rightarrow\:{x}^{\mathrm{0}} \:+\:{x}^{\mathrm{1}} \:=\:\frac{\mathrm{175}}{\mathrm{8}} \\ $$$$\Rightarrow\:{x}=\:\frac{\mathrm{167}}{\mathrm{8}}>\mathrm{20} \\ $$$$\:\mathrm{1}<{x}<\mathrm{2}\:\Rightarrow{x}^{\mathrm{1}} \:+\:{x}^{\mathrm{2}} \:=\:\frac{\mathrm{175}}{\mathrm{8}} \\ $$$$\Rightarrow\mathrm{8}{x}^{\mathrm{2}} +\mathrm{8}{x}−\mathrm{175}\:=\mathrm{0} \\ $$$$\Rightarrow{x}\:=\:\frac{−\mathrm{8}\:\pm\:\sqrt{\mathrm{64}+\mathrm{32}.\mathrm{175}}}{\mathrm{16}} \\ $$$$\mathrm{2}<{x}<\mathrm{3}\:\Rightarrow{x}^{\mathrm{2}} +{x}^{\mathrm{3}} \:=\:\frac{\mathrm{175}}{\mathrm{8}} \\ $$$$\Rightarrow\mathrm{8}{x}^{\mathrm{3}} +\mathrm{8}{x}^{\mathrm{2}} −\mathrm{175}=\mathrm{0} \\ $$$$\Rightarrow\:\left(\mathrm{2}{x}\right)^{\mathrm{3}} +\mathrm{2}\left(\mathrm{2}{x}\right)^{\mathrm{2}} −\mathrm{175}=\mathrm{0} \\ $$$${let}\:\mathrm{2}{x}\:=\:{y}\:\Rightarrow{y}^{\mathrm{3}} +\mathrm{2}{y}^{\mathrm{2}} −\mathrm{175}=\mathrm{0} \\ $$$$\left({y}−\mathrm{5}\right)\left({y}^{\mathrm{2}} +\mathrm{5}{y}+\mathrm{35}\right)=\mathrm{0} \\ $$$$\Rightarrow{y}=\mathrm{5}=\mathrm{2}{x}\:;\:{x}\:=\:\frac{\mathrm{5}}{\mathrm{2}}.\:\left({solution}\right) \\ $$
Answered by mr W last updated on 06/May/21
$${let}\:{x}={n}+{f}\:{with}\:\mathrm{0}\leqslant{f}<\mathrm{1} \\ $$$$\left({n}+{f}\right)^{{n}} +\left({n}+{f}\right)^{{n}+\mathrm{1}} =\frac{\mathrm{175}}{\mathrm{8}} \\ $$$$\frac{\mathrm{175}}{\mathrm{8}}=\left({n}+{f}\right)^{{n}} +\left({n}+{f}\right)^{{n}+\mathrm{1}} \geqslant{n}^{{n}} +{n}^{{n}+\mathrm{1}} =\left({n}+\mathrm{1}\right){n}^{{n}} \\ $$$$\Rightarrow{n}\leqslant\mathrm{2} \\ $$$$\frac{\mathrm{175}}{\mathrm{8}}=\left({n}+{f}\right)^{{n}} +\left({n}+{f}\right)^{{n}+\mathrm{1}} \leqslant\left({n}+\mathrm{1}\right)^{{n}} +\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} =\left({n}+\mathrm{2}\right)\left({n}+\mathrm{1}\right)^{{n}} \\ $$$$\Rightarrow{n}\geqslant\mathrm{2} \\ $$$$\Rightarrow{n}=\mathrm{2} \\ $$$${x}^{\mathrm{2}} +{x}^{\mathrm{3}} =\frac{\mathrm{175}}{\mathrm{8}} \\ $$$$\left({x}−\frac{\mathrm{5}}{\mathrm{2}}\right)\left({x}^{\mathrm{2}} +\frac{\mathrm{7}{x}}{\mathrm{2}}+\frac{\mathrm{35}}{\mathrm{4}}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}=\frac{\mathrm{5}}{\mathrm{2}} \\ $$