Menu Close

x-y-1-3-x-3y-4-2x-3y-17-Find-x-and-y-




Question Number 141521 by 7770 last updated on 19/May/21
 { ((((x+y))^(1/3) +(√(x−3y))=4)),((2x+3y=17)) :}  Find x and y.
$$\begin{cases}{\sqrt[{\mathrm{3}}]{\boldsymbol{{x}}+\boldsymbol{{y}}}+\sqrt{\boldsymbol{{x}}−\mathrm{3}\boldsymbol{{y}}}=\mathrm{4}}\\{\mathrm{2}\boldsymbol{{x}}+\mathrm{3}\boldsymbol{{y}}=\mathrm{17}}\end{cases} \\ $$$$\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{y}}. \\ $$
Answered by MJS_new last updated on 20/May/21
let′s try x+y=a^3  ∧ x−3y=b^2   ⇔  x=((3a^3 +b^2 )/4)∧y=((a^3 −b^2 )/4)  a+b=4 ⇒ b=4−a  9a^3 −b^2 =68 ⇒ a^3 −(1/9)a^2 +(8/9)a−((28)/3)=0 ⇒ a=2  ⇒ b=2  ⇒ x=7∧y=1
$$\mathrm{let}'\mathrm{s}\:\mathrm{try}\:{x}+{y}={a}^{\mathrm{3}} \:\wedge\:{x}−\mathrm{3}{y}={b}^{\mathrm{2}} \\ $$$$\Leftrightarrow \\ $$$${x}=\frac{\mathrm{3}{a}^{\mathrm{3}} +{b}^{\mathrm{2}} }{\mathrm{4}}\wedge{y}=\frac{{a}^{\mathrm{3}} −{b}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${a}+{b}=\mathrm{4}\:\Rightarrow\:{b}=\mathrm{4}−{a} \\ $$$$\mathrm{9}{a}^{\mathrm{3}} −{b}^{\mathrm{2}} =\mathrm{68}\:\Rightarrow\:{a}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{9}}{a}^{\mathrm{2}} +\frac{\mathrm{8}}{\mathrm{9}}{a}−\frac{\mathrm{28}}{\mathrm{3}}=\mathrm{0}\:\Rightarrow\:{a}=\mathrm{2} \\ $$$$\Rightarrow\:{b}=\mathrm{2} \\ $$$$\Rightarrow\:{x}=\mathrm{7}\wedge{y}=\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *