Menu Close

x-y-I-R-prove-that-cosx-siny-x-y-




Question Number 71984 by Henri Boucatchou last updated on 23/Oct/19
 x, y ∈ I ⊂ R  prove  that  ∣cosx − siny∣ ≤ ∣x − y∣
x,yIRprovethatcosxsinyxy
Answered by mind is power last updated on 23/Oct/19
x=y=0 mistack  ⇒1≤0  i think is ∣sin(x)−sin(y)∣≤∣x−y∣  letf(x,y)= ∫_x ^y cos(t)dt  f(x,y)=[sin(t)]_x ^y =sin(y)−sin(x)  ∣f(x,y)∣=∣∫_x ^y cos(t)dt∣≤∣∫_x ^y ∣cos(t)dt∣∣≤∣∫_x ^y 1dt∣=∣y−x∣  ⇒∣sin(y)−sin(x)∣≤∣y−x∣
x=y=0mistack10ithinkissin(x)sin(y)∣⩽∣xyletf(x,y)=xycos(t)dtf(x,y)=[sin(t)]xy=sin(y)sin(x)f(x,y)∣=∣xycos(t)dt∣⩽∣xycos(t)dt∣∣⩽∣xy1dt∣=∣yx⇒∣sin(y)sin(x)∣⩽∣yx
Commented by Henri Boucatchou last updated on 23/Oct/19
U′re  right Sir, using  cos or sin  only  is  available.
UrerightSir,usingcosorsinonlyisavailable.

Leave a Reply

Your email address will not be published. Required fields are marked *