Menu Close

x-y-y-x-3-




Question Number 143776 by akmalovna05 last updated on 18/Jun/21
x×y′′−y=x^3
$$\mathrm{x}×\mathrm{y}''−\mathrm{y}=\mathrm{x}^{\mathrm{3}} \\ $$
Answered by Olaf_Thorendsen last updated on 18/Jun/21
xy′′−y = x^3    (1)    Particular solution :  y = ax^3 +bx^2 +cx+d  y′ = 3ax^2 +2bx+c  y′′ = 6ax+2b    (1) : 6ax^2 +2bx−ax^3 −bx^2 −cx−d = x^3    { ((−a = 1)),((6a−b = 0)),((2b−c = 0)),((−d = 0)) :}  a = −1, b = −6, c = −12, d = 0  y = −x^3 −6x^2 −12x    Homogen solution :  xy′′−y = 0  → see Bessel equation
$${xy}''−{y}\:=\:{x}^{\mathrm{3}} \:\:\:\left(\mathrm{1}\right) \\ $$$$ \\ $$$$\mathrm{Particular}\:\mathrm{solution}\:: \\ $$$${y}\:=\:{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d} \\ $$$${y}'\:=\:\mathrm{3}{ax}^{\mathrm{2}} +\mathrm{2}{bx}+{c} \\ $$$${y}''\:=\:\mathrm{6}{ax}+\mathrm{2}{b} \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\::\:\mathrm{6}{ax}^{\mathrm{2}} +\mathrm{2}{bx}−{ax}^{\mathrm{3}} −{bx}^{\mathrm{2}} −{cx}−{d}\:=\:{x}^{\mathrm{3}} \\ $$$$\begin{cases}{−{a}\:=\:\mathrm{1}}\\{\mathrm{6}{a}−{b}\:=\:\mathrm{0}}\\{\mathrm{2}{b}−{c}\:=\:\mathrm{0}}\\{−{d}\:=\:\mathrm{0}}\end{cases} \\ $$$${a}\:=\:−\mathrm{1},\:{b}\:=\:−\mathrm{6},\:{c}\:=\:−\mathrm{12},\:{d}\:=\:\mathrm{0} \\ $$$${y}\:=\:−{x}^{\mathrm{3}} −\mathrm{6}{x}^{\mathrm{2}} −\mathrm{12}{x} \\ $$$$ \\ $$$$\mathrm{Homogen}\:\mathrm{solution}\:: \\ $$$${xy}''−{y}\:=\:\mathrm{0} \\ $$$$\rightarrow\:\mathrm{see}\:\mathrm{Bessel}\:\mathrm{equation} \\ $$$$ \\ $$
Commented by SANOGO last updated on 30/Aug/21

Leave a Reply

Your email address will not be published. Required fields are marked *