Menu Close

x-y-z-1-i-x-2-y-2-z-2-37-ii-x-3-y-2-z-3-91-iii-Solve-simultaneously-




Question Number 7809 by Tawakalitu. last updated on 16/Sep/16
x + y + z = 1      ......... (i)  x^2  + y^2  + z^2  = 37     ........ (ii)  x^3  + y^2  + z^3  = 91     ........ (iii)    Solve simultaneously.
x+y+z=1(i)x2+y2+z2=37..(ii)x3+y2+z3=91..(iii)Solvesimultaneously.
Commented by Tawakalitu. last updated on 16/Sep/16
That is the correct question , no mistake in the last  equation ....thanks for your help.
Thatisthecorrectquestion,nomistakeinthelastequation.thanksforyourhelp.
Commented by prakash jain last updated on 16/Sep/16
x^3 +z^3 +y^2 =91  (x+z)(x^2 +z^2 −xz)+y^2 =91  from (i) x+z=1−y  from (ii) x^2 +z^2 =37−y^2   (1−y)(37−y^2 −xz)+y^2 =91 (iv)  from (ii)  x^2 +z^2 +2xz−2xz+y^2 =37  (x+z)^2 −2xz+y^2 =37  (1−y)^2 −2xz+y^2 =37⇒xz=(((1−y)^2 +y^2 −37)/2)  from (iv)  (1−y)(37−y^2 −(((1−y)^2 +y^2 −37)/2))+y^2 =91  (1−y)(((74−2y^2 −1−y^2 +2y−y^2 +37)/2))+y^2 =91  (1−y)(110+2y)+2y^2 =182  110−110y+2y−2y^2 +2y^2 =182  110−108y=182  55−54y=91  −54y=91−55=36⇒y=−((18)/(27))=−(2/3)
x3+z3+y2=91(x+z)(x2+z2xz)+y2=91from(i)x+z=1yfrom(ii)x2+z2=37y2(1y)(37y2xz)+y2=91(iv)from(ii)x2+z2+2xz2xz+y2=37(x+z)22xz+y2=37(1y)22xz+y2=37xz=(1y)2+y2372from(iv)(1y)(37y2(1y)2+y2372)+y2=91(1y)(742y21y2+2yy2+372)+y2=91(1y)(110+2y)+2y2=182110110y+2y2y2+2y2=182110108y=1825554y=9154y=9155=36y=1827=23
Commented by prakash jain last updated on 16/Sep/16
xz=y^2 −y−18=(4/9)+(2/3)−18  x+z=1−y=(5/3)  x+z and xz are known so x−z can be found  and value of x and z can be obtained as well.
xz=y2y18=49+2318x+z=1y=53x+zandxzareknownsoxzcanbefoundandvalueofxandzcanbeobtainedaswell.
Answered by Rasheed Soomro last updated on 18/Sep/16
x + y + z = 1      ......... (i)  x^2  + y^2  + z^2  = 37     ........ (ii)  x^3  + y^2  + z^3  = 91     ........ (iii)  (i)⇒x+z=1−y  (ii)⇒x^2 +z^2 =37−y^2 ⇒(x+z)^2 −2xz=37−y^2                ⇒(1−y)^2 −2xz=37−y^2                 ⇒(1−y)^2 +y^2 −37=2xz                 ⇒xz=((1−2y+y^2 +y^2 −37)/2)=((2y^2 −2y−36)/2)=y^2 −y−18...(iv)  (iii)⇒x^3 +z^3 =91−y^2 ⇒(x+z)^3 −3xz(x+z)=91−y^2                      ⇒(1−y)^3 −3xz(1−y)=91−y^2                      ⇒xz=(((1−y)^3 +y^2 −91)/(3(1−y)))..................................(v)  (iv),(v)⇒y^2 −y−18=(((1−y)^3 +y^2 −91)/(3(1−y)))  See the comments(By prakash jain) for complete answer.
x+y+z=1(i)x2+y2+z2=37..(ii)x3+y2+z3=91..(iii)(i)x+z=1y(ii)x2+z2=37y2(x+z)22xz=37y2(1y)22xz=37y2(1y)2+y237=2xzxz=12y+y2+y2372=2y22y362=y2y18(iv)(iii)x3+z3=91y2(x+z)33xz(x+z)=91y2(1y)33xz(1y)=91y2xz=(1y)3+y2913(1y).(v)(iv),(v)y2y18=(1y)3+y2913(1y)Seethecomments(Byprakashjain)forcompleteanswer.

Leave a Reply

Your email address will not be published. Required fields are marked *