Menu Close

x-y-z-gt-0-0-x-3-y-3-z-3-xyz-4-proof-x-y-z-3-x-3-y-3-z-3-27-3-




Question Number 139762 by mathdanisur last updated on 01/May/21
x;y;z>0, γ≥0, x^3 +y^3 +z^3 +xyz=4  proof: (x+y+z)^3 +γ(x^3 +y^3 +z^3 )≥27+3γ
$${x};{y};{z}>\mathrm{0},\:\gamma\geqslant\mathrm{0},\:{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} +{xyz}=\mathrm{4} \\ $$$${proof}:\:\left({x}+{y}+{z}\right)^{\mathrm{3}} +\gamma\left({x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} \right)\geqslant\mathrm{27}+\mathrm{3}\gamma \\ $$
Answered by mindispower last updated on 02/May/21
AM−GM   x^3 +y^3 +z^3 ≥3((x^3 y^3 z^3 ))^(1/3) =3xyz  ⇒4≥4xyz⇒x^3 +y^3 +z^3 =4−xyz≥3  (x+y+z)≥3((xyz))^(1/3) ⇒(x+y+z)^3 ≥27xyz≥27  (x+y+z)^3 +γ(x^3 +y^3 +z^3 )≥27+3γ
$${AM}−{GM}\:\:\:{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} \geqslant\mathrm{3}\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} {y}^{\mathrm{3}} {z}^{\mathrm{3}} }=\mathrm{3}{xyz} \\ $$$$\Rightarrow\mathrm{4}\geqslant\mathrm{4}{xyz}\Rightarrow{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} =\mathrm{4}−{xyz}\geqslant\mathrm{3} \\ $$$$\left({x}+{y}+{z}\right)\geqslant\mathrm{3}\sqrt[{\mathrm{3}}]{{xyz}}\Rightarrow\left({x}+{y}+{z}\right)^{\mathrm{3}} \geqslant\mathrm{27}{xyz}\geqslant\mathrm{27} \\ $$$$\left({x}+{y}+{z}\right)^{\mathrm{3}} +\gamma\left({x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} \right)\geqslant\mathrm{27}+\mathrm{3}\gamma \\ $$
Commented by mathdanisur last updated on 02/May/21
27xyz≤27, since xyz≤1,  please check solution sir
$$\mathrm{27}{xyz}\leqslant\mathrm{27},\:{since}\:{xyz}\leqslant\mathrm{1}, \\ $$$${please}\:{check}\:{solution}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *