Menu Close

x-Z-n-R-n-x-2n-Does-x-exist-




Question Number 4037 by Filup last updated on 27/Dec/15
∃x∈Z∃n∈R:n^x =2n  Does x exist?
xZnR:nx=2nDoesxexist?
Commented by Filup last updated on 27/Dec/15
n=x=2  ⇒2^2 =2×2    Any others? Can we prove/disprove?
n=x=222=2×2Anyothers?Canweprove/disprove?
Answered by RasheedSindhi last updated on 27/Dec/15
log(n^x )=log(2n)  x log n=log 2+log n        x=((log 2+log n)/(log n))         x=1+((log 2)/(log n))          x=1+log_n 2   for   n=2,x=2             let n=(√2)            x=1+log_(√2) 2=1+2=3  ((√2))^3 =2((√2))  for n=^m (√2),x=m+1,m∈N     (^m (√2))^(m+1) =2(^m (√2))  Verification:      (^m (√2))^m .^m (√2)=2(^m (√2))        2(^m (√2))=2(^m (√2))
log(nx)=log(2n)xlogn=log2+lognx=log2+lognlognx=1+log2lognx=1+logn2forn=2,x=2letn=2x=1+log22=1+2=3(2)3=2(2)forn=m2,x=m+1,mN(m2)m+1=2(m2)Verification:(m2)m.m2=2(m2)2(m2)=2(m2)
Commented by Filup last updated on 27/Dec/15
What does this mean?
Whatdoesthismean?
Commented by RasheedSindhi last updated on 27/Dec/15
For all n=2^(1/m) ,where m is any  natural, There exist x=m+1  an integer such that     (2^(1/m) )^(m+1) =2(2^(1/m) )
Foralln=21m,wheremisanynatural,Thereexistx=m+1anintegersuchthat(21/m)m+1=2(21/m)

Leave a Reply

Your email address will not be published. Required fields are marked *