Menu Close

x-Z-x-p-1-p-2-p-n-p-x-p-Z-x-factors-of-p-1-fact-p-2-fact-p-n-How-could-you-formally-write-the-number-of-ways-you-can-write-x-in-terms-of-the-product-of-n-integers-




Question Number 5777 by FilupSmith last updated on 27/May/16
∃x∈Z^+ :x=p_1 p_2 ...p_n ∧∀p≠x, p∈Z^+     x=(factors of p_1 )(fact. p_2 )...(fact. p_n )  How could you formally write the  number of ways you can write x in terms  of the product of n integers?
xZ+:x=p1p2pnpx,pZ+x=(factorsofp1)(fact.p2)(fact.pn)Howcouldyouformallywritethenumberofwaysyoucanwritexintermsoftheproductofnintegers?
Commented by FilupSmith last updated on 27/May/16
ω(x)=number of distinct prime factors  e.g. 12=2^3 ×3^1   ω(12)=2  x=Π_(t=1) ^(ω(x)) p_t ^e_t        (product of prime factors)  let ℧(x)=total number of prime factors  ℧(x)=Σ_(t=1) ^(ω(x)) e_t   ∴ combinations C(x) = (℧(x))!  C(x) = (Σ_(t=1) ^(ω(x)) e_t )!  ????
ω(x)=numberofdistinctprimefactorse.g.12=23×31ω(12)=2x=ω(x)t=1ptet(productofprimefactors)let(x)=totalnumberofprimefactors(x)=ω(x)t=1etcombinationsC(x)=((x))!C(x)=(ω(x)t=1et)!????
Commented by FilupSmith last updated on 27/May/16
if combinations of two products x=pq  x=(p_1 p_2 ...p_m )(q_1 q_2 ...q_n )  =(m+n)!  =(℧(p)+℧(q))!    for x=abc...n  C(x)=(℧(a)+℧(b)+...+℧(n))!  i think this is the case
ifcombinationsoftwoproductsx=pqx=(p1p2pm)(q1q2qn)=(m+n)!=((p)+(q))!forx=abcnC(x)=((a)+(b)++(n))!ithinkthisisthecase

Leave a Reply

Your email address will not be published. Required fields are marked *