Menu Close

xe-x-dx-




Question Number 75873 by Rio Michael last updated on 19/Dec/19
∫xe^x dx
$$\int{xe}^{{x}} {dx} \\ $$
Answered by MJS last updated on 19/Dec/19
u′=e^x  ⇒ u=e^x   v=x ⇒ v′=1  ∫u′v=uv−∫uv′  ∫xe^x dx=xe^x −∫e^x dx=xe^x −e^x =  =(x−1)e^x +C
$${u}'=\mathrm{e}^{{x}} \:\Rightarrow\:{u}=\mathrm{e}^{{x}} \\ $$$${v}={x}\:\Rightarrow\:{v}'=\mathrm{1} \\ $$$$\int{u}'{v}={uv}−\int{uv}' \\ $$$$\int{x}\mathrm{e}^{{x}} {dx}={x}\mathrm{e}^{{x}} −\int\mathrm{e}^{{x}} {dx}={x}\mathrm{e}^{{x}} −\mathrm{e}^{{x}} = \\ $$$$=\left({x}−\mathrm{1}\right)\mathrm{e}^{{x}} +{C} \\ $$
Commented by Rio Michael last updated on 21/Dec/19
excuse me sir am kinda confused  when it comes to these by parts stuffs  why can′t we  take  u′ = x ⇒ u = (1/2)x^2
$${excuse}\:{me}\:{sir}\:{am}\:{kinda}\:{confused} \\ $$$${when}\:{it}\:{comes}\:{to}\:{these}\:{by}\:{parts}\:{stuffs} \\ $$$${why}\:{can}'{t}\:{we}\:\:{take} \\ $$$${u}'\:=\:{x}\:\Rightarrow\:{u}\:=\:\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} \\ $$
Commented by MJS last updated on 21/Dec/19
try it  u′=x ⇒ u=(1/2)x^2   v=e^x  ⇒ v′=e^x   ∫u′v=uv−∫uv′  ∫xe^x dx=(1/2)x^2 e^x −(1/2)∫x^2 e^x dx  the point is, we must try to find u, v to make  it easier
$$\mathrm{try}\:\mathrm{it} \\ $$$${u}'={x}\:\Rightarrow\:{u}=\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} \\ $$$${v}=\mathrm{e}^{{x}} \:\Rightarrow\:{v}'=\mathrm{e}^{{x}} \\ $$$$\int{u}'{v}={uv}−\int{uv}' \\ $$$$\int{x}\mathrm{e}^{{x}} {dx}=\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} \mathrm{e}^{{x}} −\frac{\mathrm{1}}{\mathrm{2}}\int{x}^{\mathrm{2}} \mathrm{e}^{{x}} {dx} \\ $$$$\mathrm{the}\:\mathrm{point}\:\mathrm{is},\:\mathrm{we}\:\mathrm{must}\:\mathrm{try}\:\mathrm{to}\:\mathrm{find}\:{u},\:{v}\:\mathrm{to}\:\mathrm{make} \\ $$$$\mathrm{it}\:\mathrm{easier} \\ $$
Commented by Rio Michael last updated on 21/Dec/19
okay,so we just choose to make our problem easier.
$${okay},{so}\:{we}\:{just}\:{choose}\:{to}\:{make}\:{our}\:{problem}\:{easier}. \\ $$
Commented by MJS last updated on 21/Dec/19
yes. but it can be tricky sometimes
$$\mathrm{yes}.\:\mathrm{but}\:\mathrm{it}\:\mathrm{can}\:\mathrm{be}\:\mathrm{tricky}\:\mathrm{sometimes} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *