Question Number 5030 by LMTV last updated on 04/Apr/16
$${y}=\frac{\mathrm{cos}\:{x}}{\:\sqrt{\mathrm{1}+\mathrm{sin}\:{x}}} \\ $$$${y}'=? \\ $$$${y}=\mathrm{cos}^{\mathrm{2}} \:\mathrm{4}{x} \\ $$$${y}'=? \\ $$
Answered by FilupSmith last updated on 04/Apr/16
$${y}=\frac{\mathrm{cos}\:{x}}{\:\sqrt{\mathrm{1}+\mathrm{sin}\:{x}}} \\ $$$${y}'=−\mathrm{sin}\left({x}\right)\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{sin}\:{x}}}+\mathrm{cos}\left({x}\right)\left(−\frac{\mathrm{cos}\left({x}\right)}{\mathrm{2}\left(\mathrm{1}+\mathrm{sin}\:{x}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\right) \\ $$$${y}'=−\left(\frac{\mathrm{sin}\left({x}\right)}{\:\sqrt{\mathrm{1}+\mathrm{sin}\left({x}\right)}}+\frac{\mathrm{cos}^{\mathrm{2}} \left({x}\right)}{\mathrm{2}\sqrt{\left(\mathrm{1}+\mathrm{sin}\left({x}\right)\right)^{\mathrm{3}} }}\right) \\ $$$$ \\ $$$$ \\ $$$${y}=\mathrm{cos}^{\mathrm{2}} \left(\mathrm{4}{x}\right) \\ $$$$=\left(\mathrm{cos}\left(\mathrm{4}{x}\right)\right)^{\mathrm{2}} \\ $$$${y}'=\mathrm{2cos}\left(\mathrm{4}{x}\right)\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}\left(\mathrm{4}{x}\right) \\ $$$$\therefore\:{y}'=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\left(\mathrm{4}{x}\right)\mathrm{sin}\left(\mathrm{4}{x}\right) \\ $$