Menu Close

y-f-x-g-x-f-x-odd-function-g-x-even-function-find-f-0-if-y-2x-2-sin-x-3-1-




Question Number 4820 by love math last updated on 16/Mar/16
y=f(x)+g(x)    f(x) − odd function  g(x) − even function    find f(0), if y= 2x^2 +((sin x)/3)+1
y=f(x)+g(x)f(x)oddfunctiong(x)evenfunctionfindf(0),ify=2x2+sinx3+1
Answered by prakash jain last updated on 16/Mar/16
y(x)+y(−x)=f(x)+g(x)+f(−x)+g(−x)  =f(x)+g(x)+f(x)−g(x)=2f(x)  y(x)+y(−x)=2x^2 +((sin x)/3)+1+2(−x)^2 +((sin (−x))/3)+1  =4x^2 +2=2f(x)  f(x)=2x^2 +1  f(0)=1
y(x)+y(x)=f(x)+g(x)+f(x)+g(x)=f(x)+g(x)+f(x)g(x)=2f(x)y(x)+y(x)=2x2+sinx3+1+2(x)2+sin(x)3+1=4x2+2=2f(x)f(x)=2x2+1f(0)=1
Commented by Yozzii last updated on 16/Mar/16
f(x) is an odd function; 2x^2 +1 is even.
f(x)isanoddfunction;2x2+1iseven.
Commented by Rasheed Soomro last updated on 16/Mar/16
f(x) is an odd function, sof(−x) =−f(x)  ∴ y(x)+y(−x)=2g(x)
f(x)isanoddfunction,sof(x)=f(x)y(x)+y(x)=2g(x)
Commented by prakash jain last updated on 16/Mar/16
Sorry. I switch f(x) and g(x).  Took f(x) as even and g(x) as odd.  So   g(x)=2x^2 +1  f(x)=y(x)−g(x)=((sin x)/3)  f(0)=0
Sorry.Iswitchf(x)andg(x).Tookf(x)asevenandg(x)asodd.Sog(x)=2x2+1f(x)=y(x)g(x)=sinx3f(0)=0

Leave a Reply

Your email address will not be published. Required fields are marked *